首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the anterosuperior and posterosuperior portions of the ectosylvian gyrus of dogs small foci were found in which clicks evoked responses with parameters close to those of primary responses (PRs), but with an initial negative wave. An analysis of PRs with an initial wave of different polarity was carried out by studying the reproducibility of the response during an increase in the frequency of stimulation and during the action of various drugs. PRs with an initial negative ("negative" focus) and positive (auditory area AI) waves were found to be reproduced when the frequency of stimulation was 20–30 Hz, whereas the negative phase of the classical PR disappeared when the stimulation frequency reached 10–15 Hz. The polarity of the response in these foci was unchanged after injection of a lethal dose of nembutal, but the negative phase of the classical PR disappeared during moderately deep anesthesia. Strychnine, on the other hand, considerably increased the amplitude of the negative wave in the positive-negative complex, but the initial negative potential was only very slightly and temporarily increased, and it was lost in the subsequent strychnine spike. GABA inhibited both the PR with initial negative wave and also the negative phase of the classical PR. The results suggest that PRs with different polarities of their initial wave differ in origin. The results of experiments with GABA indicate that PRs with an initial negative wave arise through excitation of apical dendrites.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 488–496, September–October, 1970.  相似文献   

2.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

3.

Background  

A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i) the amplitude of the N1m response and (ii) its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy.  相似文献   

4.
Investigation of unit responses of the cerebellar cortex (lobules VI–VII of the vermis) to acoustic stimulation showed that the great majority of neurons responded by a discharge of one spike or a group of spikes with a latent period of 10–40 msec and with a low fluctuation value. Neurons identified as Purkinje cells responded to sound either by inhibition of spontaneous activity or by a "climbing fiber response" with a latent period of 40–60 msec and with a high fluctuation value. In 4 of 80 neurons a prolonged (lasting about 1 sec or more), variable response with a latent period of 225–580 msec was observed. The minimal thresholds of unit responses to acoustic stimuli were distributed within the range from –7 to 77 dB, with a mode from 20 to 50 dB. All the characteristics of the cerebellar unit responses studied were independent of the intensity, duration, and frequency of the sound, like neurons of short-latency type in the inferior colliculi. In certain properties — firing pattern, latent period, and threshold of response — the cerebellar neurons resemble neurons of higher levels of the auditory system: the medial geniculate body and auditory cortex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 3–12, January–February, 1973.  相似文献   

5.
Electrical responses of the fenestra cochleae to stimulation by clicks of different intensity, polarity, and frequency, were studied in anesthetized cats. The absolute values of amplitude and latent period of the neural component of the response reflect the physiological state of the auditory nerve. Besides ordinary potentials characterized by peaks N1 and N2, specific responses were observed when clicks with an intensity of 85 dB or "rarefaction" clicks were used. Dependence of the amplitude of these responses on the intensity of acoustic stimuli of different polarity was investigated during a change in the rhythm of the stimulation; the effect of different rhythms of stimulation on the gradient of the curve reflecting this relationship was examined. The possible mechanisms of the effect of stimulus frequency are discussed.Scientific-Research Institute of Otolaryngology, Ministry of Health of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 151–157, March–April, 1979.  相似文献   

6.
In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, “delta-brushes,” in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic “clicks” near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus (“click” and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and “click” stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for “click” and voice stimuli: responses to “clicks” became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.  相似文献   

7.
Changes in the responsiveness of the auditory cortex to an acoustic click and to direct stimulation of the medial geniculate body were studied by the method of evoked potentials in an extended experiment on cats with implanted electrodes. It is shown that the minimum interval between two stimuli for which a second click produces an EP in the auditory cortex is from 30 to 50 msec. The relative refractory period consists of two parts. The first (50–100 msec) is characterized by a rapid recovery, and the second (about 500 msec) by a slow recovery. In contrast with a click, direct stimulation of the geniculate body does not produce a refractory condition but one of facilitation. The effects of Nembutal and chloralose anesthesia and the state of alertness on the recovery of auditory cortex responsiveness were investigated. The reason for the absence and the reduction of an EP from the auditory cortex to a testing click during absolute and relative refractory periods is not a passive decrease of excitability of the usual refractory kind, but an active interplay of excitatory and inhibitory processes in the cerebral cortex, geniculate bodies, and reticular formation of the brain stem.A. A. Bogomolets' Institute of Physiology, Academy of Sciences, Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 54–64, July–August, 1969.  相似文献   

8.
The effect of stimulation of cortical association (orbito-frontal, parietal) and projection (auditory, sensomotor) areas on the activity of Purkinje neurons of the cerebellar cortex was studied in adult cats anesthetized with pentobarbital, with or without chloralose. These responses were compared with those to peripheral stimuli. Definite similarity was found between the responses of Purkinje cells to different cortical (association and projection) stimuli as regards both the types of responses of the neurons and their ability to respond. No similarity was observed in the responses of Purkinje cells to peripheral (visual, auditory, electrodermal) stimulation. Whereas almost identical numbers of neurons (over 50%) were excited in response to the different forms of cortical stimulation, the ability of the neurons to respond to peripheral stimuli differed considerably: 44.6% of neurons responded to electrodermal stimulation, 34.2% to auditory, and 18.8% to visual.Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 483–489, September–October, 1976.  相似文献   

9.
In the source of experiments on unanesthetized cats it was shown that all the essential qualities of acoustic stimuli are expressed in the frequency following response (FFR) peculiar to the lower regions of the auditory system (the inferior colliculus included). Amplitude and wave-form of response largely depend on the frequency and intensity of stimulation, frequency and phasic spectra bands for complex signals, together with their wave form and periodicity, acoustic masking of the "useful" signal, and finally interaural differences in stimulation modelling different spatial positions of the sound source.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 67–74, January–February, 1987.  相似文献   

10.
Receptive fields of auditory cortical neurons were studied by electrical stimulation of nerve fibers in different parts of the cochlea in cats anesthetized with pentobarbital. The dimensions of the receptive fields were shown to depend on the topographic arrangement of the neuron in the auditory cortex. The more caudad the neuron on the cortical projection of the cochlea in the primary auditory cortex, the more extensive its receptive field. The receptive fields were narrowest in the basal turn of the cochlea and were symmetrical with respect to their center. It is suggested that the region of finest discrimination of acoustic stimuli in cats is located in the basal region of the cochlea, i.e., in that part of its receptor system which has the narrowest receptive field and is represented by significantly more (than the middle and apical regions of the cochlea) nerve cells in the primary auditory cortex [1].A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 467–473, September–October, 1981.  相似文献   

11.
Neuronal responses of an acutely isolated slab of auditory cortex (area AI) to intracortical electrical stimulation were studied intracellularly in cats anesthetized with pentobarbital. It was found that 77% of responses were primary IPSPs, and allowing for secondary inhibitory responses, an inhibitory response was observed in 92% of neurons. All types of neuronal responses in the slab were short-latency. The maximal response latency did not exceed 5 msec. Neurons responding to stimulation by IPSPs were found at all depths in the slab, with a maximum in layers II–III. Nearly all primary IPSPswere mono- and disynaptic. Pentobarbital increased the duration of individual neuronal inhibitory responses in the isolated slab of auditory cortex without affecting maximal duration of the IPSP. The mechanisms of the effect of pentobarbital on the amplitude and duration of IPSPs are discussed.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 147–152, March–April, 1984.  相似文献   

12.
Postsynaptic potentials (PSPs) of 83 neurons in the motor cortex of unanesthetized cats in response to electrodermal, photic, and acoustic stimulation were investigated by intra-and quasi-intracellular recording methods. Most cells responded to stimulation of at least one limb. About 60% of neurons of the posterior and over 75% of neurons of the anterior sigmoid gyrus responded to stimulation of two (or more) limbs. In 29 of 39 neurons of the anterior and 12 of 44 of the posterior sigmoid gyrus PSPs with a short (less than 50 msec) and stable latent period were evoked by flashes and clicks. On presentation of two somesthetic stimuli complete blocking (if the interval was less than 30–60 msec) or weakening (interval 30–200 msec) of responses to the second (testing) stimulus was observed. On presentation of paired photic (or acoustic) stimuli or paired stimuli of different modalities at various intervals from 0 to 100 msec, the testing response was often potentiated. The character of the responses and their interaction thus differed from those obtained under chloralose anesthesia [6, 7]. It is postulated that under the action of chloralose a system of neurons with strong excitatory feedback is formed in the motor cortex which may respond to stimuli of different modalities by something resembling the "all or nothing" principle.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 563–573, November–December, 1971.  相似文献   

13.
The tonotopic organization of the dorsocaudal (DC) auditory cortex area AII was investigated during acute experiments on cats anesthetized with Nembutal. A capacity for selective response to presentation of auditory stimuli at a certain frequency was found in 93% of the neurons investigated. It was further observed that 75% of these cells were characterized by their fine tuning to one characteristic frequency (CF), the remaining 26% had several CF, and 7% reacted with a spike response to acoustic stimulation at all test frequencies and had no clearcut CF. A relationship was found between the location of a unit within the DC zone and its CF level. Neurons with the lowest CF were located in the upper position of the sylvian gyrus near the posterior ectosylvian sulcus. The CF of neurons rose progressively in step with increasing distance between the site of microelectrode recording and the low frequency focus of the DC zone travelling along the sylvian gyrus in a ventrorostral direction. Distance between low and high frequency foci of the DC zone measured 2.5–3.5 mm. Location of this zone in relation to the auditory cortex sulci varied considerably from one animal to another. Neurons with similar CF levels and arranged on this basis in vertical cortical columns could vary substantially in the dimensions of their receptive fields, sharpness of tunining to their own CF, and firing response pattern.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 220–227, March–April, 1988.  相似文献   

14.
Responses of 251 neurons in the anterior part of the middle suprasylvian gyrus to stimulation of primary sensory (auditory, visual, somatosensory) areas and also to acoustic, visual, and somatosensory stimuli were studied in acute experiments on cats anesthetized with chloralose (40 mg/kg) and pentobarbital (20 mg/kg). Three groups of neurons were distinguished by their responses to stimulation of the primary sensory areas: those responding by an increased firing rate (117) or by inhibition (35) and those not responding (99). Responses of 193 neurons to stimulation of the peripheral afferent systems were analyzed. Neurons of the parietal associative cortex responded more frequently to cortical stimulation than to peripheral. By the duration of the latent period of their response to cortical stimulation the neurons were divided into three groups: those with short (less than 20 msec), medium (20–30 msec), and long latent periods (over 30 msec). The first group was the largest.Kemerovo State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 524–530, September–October, 1972.  相似文献   

15.
In acute experiments in rabbits immobilized by d-tubocurarine, stimulation of the entorhinal area with rectangular electric impulses led to the appearance of evoked potentials (EP) with a latent period of 6–12 msec in the occipital, temporal, parietal, and cingular areas of the neocortex. The amplitude of the positive response component was 500 µV, and its duration 25–50 msec. The negative component was not always discernible. When rhythmic stimulation was used, these EPs followed stimulation frequencies not exceeding 20 per sec. Stimulation of the medial parts of the entorhinal area with a frequency of one to three per sec was accompanied by recruitment of the EP in the occipital and temporal neocortex areas. Nembutal depressed the amplitude of the neocortex EP appearing in response to stimulation of the entorhinal cortex. With the aid of double stimulation it could be established that, after conditioning stimulation of the entorhinal area, the positive component of the primary response (PR) evoked by stimulation of the contralateral sciatic nerve in the projection zone of the somatosensory cortex is strengthened during the first 50 msec, and subsequently after 80–120 msec. In these cases, the negative component was depressed. These findings are discussed with a view to the influence of limbic structures on the neocortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 73–78, January–February, 1970.  相似文献   

16.
Extracellular investigations on the activity of 269 caudate neurons during electrical stimulation of the midbrain reticular formation were carried out during chronic experiments on cats. Stimuli of different sensory modalities were used: auditory, mechanical, and visual. A response was observed to both reticular and peripheral stimulation in single neurons. The former produced an orthodromic response in 53% of caudate neurons, notable for its high probability of occurrence. A total of 23% of caudal neurons responded to this type of stimulation and application of stimuli of a single modality, while 14% responded polymodally. An excitatory response pattern prevailed during all types of stimulation. By applying twin stimuli to 100 caudate neurons, a capacity for interaction between reticular and acoustic inputs was discovered. Interaction was similarly observed in neurons which had reacted neither to separate application of both stimuli nor to either of the stimuli in isolation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 101–110, January–February, 1987.  相似文献   

17.
Unit responses in the anterior zone of the suprasylvian gyrus to visual, electrodermal, and acoustic stimulation were investigated in experiments on unanesthetized cats immobilized with tubocurarine. Electrical activity was recorded from 131 units, 121 of which were spontaneously active. In 65.5% of cells responses consisted of a short or long increase or a decrease in intensity of spike activity. Most cells (58.2%) were monosensory. Responses to visual stimulation were given by 72% of neurons, to electrodermal by 61.6%, and to acoustic by 9.3%. The corresponding latent periods were 20–40, 20–30, and 15–20 msec. Responses of the same neurons to different peripheral stimuli were uniform or they differed in their dynamics. Intracellular recording gave responses in the form of EPSPs (amplitude 4–5 mV, duration 60–80 msec) or, rarely, IPSPs (amplitude 2–3 mV, duration 160–200 msec). The functional organization of the associative cortex and mechanisms of analysis of incoming afferent information are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 368–374, July–August, 1972.  相似文献   

18.
In chronic experiments with glass microelectrodes responses of 288 spontaneously active neurons in the auditory cortex were investigated in cats at rest (123 neurons) and after defensive conditioning to sound (165 neurons). In the first situation 43% of neurons did not respond to acoustic stimulation. Most (about 60%) responses of the reacting neurons showed marked inhibition. Conditioning caused an increase (up to 72%) in the number of neurons responding to acoustic stimulation, the appearance of tonic responses, a severalfold increase in the amplitude of the responses, an increase in the number of responses of activation type, and stabilization of their form. The results point to increased excitability of neurons in this cortical area.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 25–34, January–February, 1979.  相似文献   

19.
Monopolar intracortical stimulation of the auditory cortex was carried out in cats immobilized with D-tubocurarine. A macroelectrode (tip diameter 100 µ) or a microelectrode (tip diameter 10–15 µ) was used for stimulation. In both cases, besides excitatory responses, primary IPSPs with latent periods of 0.4–1.2 and 1.4–6.0 msec were recorded in cortical neurons close to the point of stimulation. The first group of IPSPs are considered to be generated in response to direct stimulation of bodies or axons of inhibitory cortical neurons, i.e., monosynaptically. The amplitude of these IPSPs varied in different neurons from 3 to 15 mV, and their duration from 4 to 150 msec. Additional later inhibitory responses were superposed on many of them. Of the IPSPs generated in auditory cortical neurons in response to stimulation of geniculocortical fibers 1.5% had a latency of 0.8–1.3 msec. They also are assumed to be monosynaptic. It is concluded that the duration of synaptic delay of IPSPs in cortical neurons and spinal motoneurons is the same, namely 0.3–0.4 msec. Axons of auditory cortical inhibitory neurons may be 1.5 mm long. The velocity of impulse conduction along these axons is 1.6–2.8 m/sec. The genesis of some special features of IPSPs of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 458–467, September–October, 1975.  相似文献   

20.
During acute experiments on 20 cats a comparative study was made of neuronal reaction to a tone, as recorded during the first few hours after administration of Nembutal and after an interval of 10–30 h. No spontaneous activity was seen in 89% of auditory cortex neurons of the anesthetized cats; these produced a sterotyped on- response to the optimal frequency tone. Late neuronal spike discharges at distinct intervals of 100–150 msec appeared in response to the setting up of acoustic stimulation after a brief latent reaction lasting 9–15 msec. It was shown that this stimulation did not produce an off-response in the cortical neurons. When the animals emerged from Nembutal anesthesia, the neurons reacted very differently to the optimal frequency tone. About 76% of the cells produced an on, on-off or off response, while about 21% responded with either tonic spike discharges or total inhibition of these throughout the acoustic stimulation. In unanesthetized cats the vast majority of AI cortical neurons were capable of reacting as long as the stimulus lasted. It is shown how this ability is lost under deep Nembutal anesthetic.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 728–737, November–December, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号