首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD+ at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD+. A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD+ and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductaseTOL with dioxygen and thus present a solution toward conflicting requirements.  相似文献   

2.
《Luminescence》2003,18(1):49-57
The chemiluminescence reaction of lucigenin (Luc2+?2NO3?, N,N′‐dimethyl‐9,9′‐biacridinium dinitrate) at gold electrodes in dioxygen‐saturated alkaline aqueous solutions (pH 10) was investigated in detail by the use of electrochemical emission spectroscopy. We noted that both O2 and Luc2+ are reduced on a gold electrode in aqueous solution of pH 10 in almost the same potential region. From this fact, we expected chemiluminescence based on a radical–radical coupling reaction of superoxide ion (O2·?) and one‐electron reduced form of Luc2+ (Luc·+, a radical cation). Chemiluminescence was actually observed in the potential range where O2 and Luc2+ were simultaneously reduced at the electrodes. The effects were examined upon addition of enzymes, i.e. superoxide dismutase (SOD) and catalase, into the solution and the substitution of heavy water (D2O) for light water (H2O) as a solvent on the chemiluminescence. In the presence of native and active SOD, chemiluminescence was completely absent. On the other hand, chemiluminescence was observed, unchanged in the presence of either denatured and inert SOD or catalase. In addition, the amount of chemiluminescence in D2O solution was about three times greater than that in H2O solution. These results, together with cyclic voltammetric results, suggest that O2·? participates directly in the chemiluminescence but H2O2 does not, and the chemiluminescence results from the coupling reaction between O2·? and Luc·+ under the present experimental conditions. These chemically unstable species, O2·? and Luc·+, are produced during the simultaneous electroreduction of O2 and Luc2+. The coupling reaction between those radical species would lead to the formation of a dioxetane‐type intermediate and, finally, to chemiluminescence. The chemiluminescence reaction mechanism is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
First, fundamental properties (structure, acid and redox properties) and advantages of solid polyoxometalate catalysts (catalyst design by acid and redox control, molecularity, unusual reaction field and unique basicity) are explained. Then, the mechanism of alcohol dehydration elucidated by direct observation of reaction intermediates by solid-state NMR and the very high activity of Cs2.5H0.5PW12O40 are described. Finally several industrial applications of polyoxometalate catalysts are briefly introduced placing stress on the role of unique chemical properties of polyoxometalates.  相似文献   

4.
One, two, three and four electron reduced forms of α-[P2W18O62]6− in aqueous acidic electrolyte media have been selectively generated by bulk electrolysis from a solution that has an initial pH of 3.6. The reactivities of the reduced polyoxometalate anions and identities of products formed in the presence and absence of dioxygen have been assessed via oxygen and hydrogen Clark-type electrodes, a pH electrode and rotating disk electrode voltammetry. [P2W18O62]7− is stable to protons but is slowly oxidized by dioxygen (timescale: hours to days) back to [P2W18O62]6−. In contrast, [P2W18O62]8− reacts more rapidly with O2 and slowly with H+, whereas generation of the [P2W18O62]9− and [P2W18O62]10− anion is accompanied by a large increase in pH and rapid reaction with O2 or, in its absence, with H+. Consequently, it is concluded that photocatalytic reactions based upon [P2W18O62]6− chemistry are only likely to be of significance if [P2W18O62]9− or more highly reduced species are generated and form part of the catalytic cycle.  相似文献   

5.
Summary Vanadium bromoperoxidase is a naturally occurring vanadium-containing enzyme isolated from marine algae. V-BrPO catalyzes the oxidation of halides by hydrogen peroxide which can result in the halogenation of organic substrates. Bromoperoxidase activity is measured by the halogenation of monochlorodimedone (2-chloro-5,5-dimethyl-1,3-dimedone, MCD). In the absence of an organic substrate, V-BrPO catalyzes the halide-assisted disproportionation of hydrogen peroxide yielding dioxygen. The dioxygen formed is in the singlet excited state (1O2). V-BrPO is quite stable to thermal denaturation and denaturation by certain organic solvents which makes V-BrPO an excellent candidate for industrial applications. The stability of V-BrPO in the presence of strong oxidants and in the presence of phosphate is reported. Incubation of V-BrPO in phosphate buffer (1–100 mM at pH 6; 2–10 mM at pH 5) inactivates the enzyme. The inactivity can be fully restored by the addition of vanadate if excess phosphate is removed. The inactivation of V-BrPO by phosphate can be prevented by the presence of H2O2 (4–40 mM). We are currently investigating the mechanism of V-BrPO inactivation by phosphate. V-BrPO was not inactivated by HOCl (1 mM) nor H2O2. In addition V-BrPO was not inactivated under turnover conditions of 1 mM H2O2 with 0.1–1 M Cl at pH 5 nor 2 mM H2O2 with 0.1 M Br.  相似文献   

6.
M. J. Kropff 《Plant and Soil》1991,131(2):235-245
The impact of SO2 on the ionic balance of plants and its implications for intracellular pH regulation was studied to find explanations for long-term effects of SO2. When sulphur, taken up as SO2 by the shoots of plants, is not assimilated in organic compounds, but stored as sulphate, an equivalent amount of H+ is produced. These H+ ions are not buffered chemically, but removed by metabolic processes.On the basis of knowledge on metabolic buffering mechanisms a conceptual model is proposed for the removal of shoot-generated H+ by (i) OH- ions, produced in the leaves when sulphate and nitrate are assimilated in organic compounds and/or by (ii) OH- ions produced by decarboxylation of organic anions (a biochemical pH stat mechanism). The form in which nitrogen is supplied largely determines the potential of the plant to neutralize H+ in the leaves during SO2 uptake by the proposed mechanisms.In field experiments with N2 fixing Vicia faba L. crops, the increase of sulphate in the shoots of SO2-exposed plants was equivalent in charge to the decrease of organic anion content, calculated as the difference between inorganic cation content (C) and inorganic anion content (A), indicating that H+ ions produced in the leaves following SO2 uptake were partly removed by OH- from sulphate reduction and partly by decarboxylation of organic anions.The appearance of chronic SO2 injury (leaf damage) in the field experiment at the end of the growing period is discussed in relation to the impact of SO2 on the processes involved in regulation of intracellular pH. It is proposed that the metabolic buffering capacity of leaf cells is related to the rates of sulphate and nitrate reduction and the import rate of organic anions, rather than to the organic anion content in the vacuoles of the leaf cells.  相似文献   

7.
Abstract

Amiloride and its analogues affect radioligand binding to the adenosine-A1 receptor. In this paper, the specificity of this effect is investigated by generating receptor binding profiles for amiloride and two of its analogues. A limited structure-activity relationships study is performed to probe the relationship between inhibition of receptor binding by amiloride analogues and the effects of these compounds on Na+ transport, in particular Na+/H+ exchange. The receptor binding profiles of amiloride, benzamil and 5′-(N,N-hexamethylene)amiloride (HMA) indicate that the compounds affect a variety of receptors and that none of the compounds is highly selective for any of these. The SAR study indicates that it is very unlikely that a direct coupling between receptors and Na+/H+ exchange or another amiloride-sensitive ion transport system is responsible for the inhibition of receptor binding. A correlation between the signal transduction systems coupled to the receptors involved and the potency of the amiloride analogues is also absent. The varying nature of the receptors, affected by amiloride or its analogues, suggests a wide-spread presence of an amiloride binding site on receptors and other membrane proteins.  相似文献   

8.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

9.
Cornic G  Bukhov NG  Wiese C  Bligny R  Heber U 《Planta》2000,210(3):468-477
The role of cyclic electron transport has been re-examined in leaves of C3 plants because the bioenergetics of chloroplasts (H+/e = 3 in the presence of a Q-cycle; H+/ATP = 4 of ATP synthesis) had suggested that cyclic electron flow has no function in C3 photosynthesis. After light activation of pea leaves, the dark reduction of P700 (the donor pigment of PSI) following far-red oxidation was much accelerated. This corresponded to loss of sensitivity of P700 to oxidation by far-red light and a large increase in the number of electrons available to reduce P700+ in the dark. At low CO2 and O2 molar ratios, far-red light was capable of decreasing the activity of photosystem II (measured as the ratio of variable to maximal chlorophyll fluorescence, Fv/Fm) and of increasing light scattering at 535 nm and zeaxanthin synthesis, indicating formation of a transthylakoid pH gradient. Both the light-induced increase in the number of electrons capable of reducing far-red-oxidised P700 and the decline in Fv/Fm brought about by far-red in leaves were prevented by methyl viologen. Antimycin A inhibited CO2-dependent O2 evolution of pea leaves at saturating but not under limiting light; in its presence, far-red light failed to decrease Fv/Fm. The results indicate that cyclic electron flow regulates the quantum yield of photosystem II by decreasing the intrathylakoid pH when there is a reduction in the availability of electron acceptors at the PSI level (e.g. during drought or cold stresses). It also provides ATP for the carbon-reduction cycle under high light. Under these conditions, the Q-cycle is not able to maintain a H+/e ratio of 3 for ATP synthesis: we suggest that the ratio is flexible, not obligatory. Received: 23 February 1999 / Accepted: 19 August 1999  相似文献   

10.
Achim Hager  Christa Lanz 《Planta》1989,180(1):116-122
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol. Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase. In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently, the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity in vivo.  相似文献   

11.
1:12 tungstates are photosensitive in near visible and ultra-violet areas at the oxygen to metal charge transfer bands, in the presence of a great variety of organic reagents. Photosensitivity results in multi- electoral reduction of tungstates with concomitant oxidation of oganic compounds. Photosensitivity follows the order PW12O4o3? > SiW12O4o4? > FeW12O4o5? > H2W12O4o6?, which is the same order with the increasing negative redox potentials. Maximum quantum yield ~ 15% is obtained with high concentrations of organic reagents (1–10 M). The reduced heteropoly compounds (HPC) are eacily re-oxidized by atmospheirc oxygen. They are also capable of reducing hydrogen ions and this limits the extent of photoreduction.  相似文献   

12.
A moderately psychrophilic bacterium Corynebacterium paurometabolum MTCC 6841 (gram positive, short rod type) producing extracellular alkaline lipase was isolated from Lake Naukuchiatal, Uttaranchal, India. The bacterium was able to grow within a broad range of pH (5–10). Soyabean oil and olive oil served as the best carbon sources for lipase production. The bacterium preferred inorganic nitrogenous compounds, NaNO3 and KNO3, over organic nitrogenous compound for its growth. Maximum lipase production occurred at 25°C and 8.5 pH. The enzyme activity was found to be maximum at the same values of temperature and pH. The enzyme was reasonably stable in the presence of various organic solvents. No significant effect of Ca+, Cu++, Fe++, Na+, K+, Mg++, Mn+, NH4+, Co++ ions over enzyme activity was detected. Treatment with EDTA reduced the activity to nearly one half.  相似文献   

13.
The influence of reduced sulfur compounds (including stored S0) on H2 evolution/consumption reactions in the purple sulfur bacterium, Thiocapsa roseopersicina BBS, was studied using mutants containing only one of the three known [NiFe] hydrogenase enzymes: Hox, Hup or Hyn. The observed effects depended on the kind of hydrogenase involved. The mutant harbouring Hox hydrogenase was able to use S2O32−, SO32−, S2− and S0 as electron donors for light-dependent H2 production. Dark H2 evolution from organic substrates via Hox hydrogenase was inhibited by S0. Under light conditions, endogenous H2 uptake by Hox or Hup hydrogenases was suppressed by S compounds. СО2-dependent H2 uptake by Hox hydrogenase in the light required the additional presence of S compounds, unlike the Hup-mediated process. Dark H2 consumption via Hyn hydrogenase was connected to utilization of S0 as an electron acceptor and resulted in the accumulation of H2S. In wild type BBS, with high levels of stored S0, dark H2 production from organic substrates was significantly lower, but H2S accumulation significantly higher, than in the mutant GB1121(Hox+). There is a possibility that H2 produced via Hox hydrogenase is consumed by Hyn hydrogenase to reduce S0.  相似文献   

14.
This review concentrates on two areas of intense research interest involving polyoxometalates, homogeneous catalysis and medicine. The discussion of homogeneous catalysis covers a brief historical overview of organic substrate oxidation, oxidant desirability, and other classes of oxidation catalysts. The principal focus of the catalysis, use of oxidatively resistant d-electron-transition-metal-substituted polyoxometalates (TMSP) for sustained oxygenation of organic substrates, is then examined. A general compilation is given in Table I of the literature reactions involving 21 TMSP complexes, 10 oxidants, five classes of substrates, and 10 solvent systems. Possible extensions of this chemistry are discussed.The discussion of polyoxometalates in anti-HIV chemotherapy includes brief historical background of this rapidly developing area followed by an evaluation of the effectiveness of polyoxometalates as anti-HIV agents. Over two hundred polyoxometalates have been examined in cell culture with the activities (EC50 values) and toxicities (IC50 values) listed in Table II. Polyoxotungstates as a class of polyoxometalates show the most promise with respectable levels of activity, selectivity, and low toxicity. The effect of polyoxometalate countercation and modes of HIV inhibition are discussed. The review contains 60 references.  相似文献   

15.
There is an assumption in much recent literature that secreted organic anions (OAs) protect the root meristem from Al toxicity by complexation of Al ions. In fact, several possible mechanisms exist by which common OA might afford some degree of protection. Plants can excrete OA which undergo chemical association with protons (hereafter referred to as protonation) in the soil and increase rhizosphere pH. The cost in reduced carbon relative to protons consumed, C:H+, ranges from 2–6. The efficiency of this mechanism can be enhanced in the presence of soil organisms which can oxidise the OA that remain dissociated at soil pH to CO2 and H2O, thereby consuming protons which associate with lower pK functional groups (pK 1.2 to ~ 4). For fully dissociated organic acids the C:H+ ratio decreases to the range 1–3. The C cost to plants is further minimised if MnO2 is the terminal electron acceptor rather than O2, resulting in C:H+<1. OA might also complex or chelate Al. Complexes of Al3+ with oxalate appear to be effective, with some C:H+≤1. However, citrate complexation appears to be more stable in pure solutions and might offer the additional benefit of enhanced P acquisition. Our assessment is that the most efficient strategy for a plant to employ to protect itself from Al toxicity is to increase pH near the root apex by secreting OA into soil where the microbial oxidation of reduced C could be coupled with the reduction of MnO2. This would consume 0.2–0.67 mole of C per H+, which is the order of magnitude better than the C:H+ ratio of 2–6 that would occur if only protonation of OA was to be relied upon. These mechanisms have implications for the effectiveness of programs aimed at selecting cultivars for resistance to acidic soils.  相似文献   

16.
Ferricyanide reduction by Elodea densa leaves, in the dark, is associated with: (a) acidification of the medium; (b) decrease (about 0.2-0.3 units) of intracellular pH (measured in cell sap, cytoplasm, and vacuole); (c) depolarization of the transmembrane potential; (d) net efflux of K+ to the medium. Ferricyanide-induced acid secretion is markedly increased by the presence of fusicoccin (FC), and this effect is severely inhibited by the proton pump inhibitors erythrosine B and vanadate. In the presence of ferricyanide FC-induced H+ extrusion no longer requires the presence of K+ in the medium. The (ferricyanide reduced)/(H+ extruded) ratio varies from about 2, in the absence of FC, to about 1 when the toxin is present, and to more than 4, when ATP-driven H+ extrusion is inhibited by erythrosine B or by vanadate. Fusicoccin markedly reduces K+ release to the medium. The ratio (ferricyanide reduced)/(H+ extruded + K+ released) approaches unity under all of the three conditions considered. These results indicate that ferricyanide reduction depends on a plasmalemma system transporting only electrons to the extracellular acceptor, with consequent potential depolarization and cytoplasm acidification. Most of the protons released in the cytoplasm would be secondarily extruded by the ATP-driven pump, stimulated by both intracellular acidification and depolarization. K+ efflux would depend on potential depolarization.  相似文献   

17.

Background  

Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in pathogenesis, immunogenesis and morphogenesis of organisms and in the metabolic turnover of complex organic substances. They catalyze the coupling between the four one-electron oxidations of a broad range of substrates with the four-electron reduction of dioxygen to water. These catalytic processes are made possible by the contemporaneous presence of at least four copper ion sites, classified according to their spectroscopic properties: one type 1 (T1) site where the electrons from the reducing substrates are accepted, one type 2 (T2), and a coupled binuclear type 3 pair (T3) which are assembled in a T2/T3 trinuclear cluster where the electrons are transferred to perform the O2 reduction to H2O.  相似文献   

18.
By controlling the reaction temperature, pH value of the system and the polyanion templates, three inorganic-organic hybrid materials based on Keggin polyoxometalate building blocks combined with CuI/II and 4-amino-1,2,4-triazole (4atrz) have been obtained by hydrothermal methods, namely, [Cu33-OH)(4atrz)6][SiW12O40]·I·3H2O (1), [Cu4(4atrz)6][SiW12O40] (2) and [Cu6(4atrz)6][PMo12O40]2·H2O (3). Crystal structure analysis reveals that the CuI/II/4atrz complexes in the three materials show tri-, tetra- and hexanuclear models, respectively. In compound 2, the copper clusters link the polyoxometalates into the chains by weak Cu-O bonds; while in the compounds 1 and 3, the copper clusters and the polyoxometalates stack by the ionic interactions. These compounds are further characterized by powder XRD, elemental analyses, FT-IR and thermogravimetric (TG) analyses. The electrochemical behavior of 3-CPE has been studied in the 1 M H2SO4 solution. The results exhibit that there are four pairs of redox waves attributable to the four consecutive two-electron processes of Mo(VI/V) couples and the redox process is surface-controlled.  相似文献   

19.
An EPR spectrum of as synthesized [G.A. Tsigdinos, C.J. Hallada, Inorg. Chem. 7 (1968) 437-441], orange colored, H5PV2Mo10O40 polyoxometalate showed the presence of a reduced vanadium(IV) addenda atom. Surprisingly, further 31P ENDOR (electron-nuclear double resonance) measurements indicated the absence of a phosphorous heteroatom leading to the suggestion that H5VVVIVMo11O40 exists as a previously unrecognized impurity in the typically synthesized H5PV2Mo10O40 compound. H5/4PVVO4VIV/VMo11O36 was then synthesized in low yield (0.8 mol%) by omitting the addition of phosphate in a typical H5PV2Mo10O40 preparation. The molecular formulation and structure was supported by X-ray crystallography, infrared and mass spectrometry. Further use of EPR/ENDOR/ESEEM (electron-spin echo envelope modulation) allowed the formulation of [VVVIVMo11O40]5− as [VVO4VIVMo11O36]5−. Accordingly, the polyoxometalate has a heteroatom core with 11 molybdenum addenda and one VO2+ moiety at the polyoxometalate surface. The redox potential and the catalytic activity of the new vanadomolybdate polyoxometalate compound were essentially identical to the often-studied H5PV2Mo10O40 polyoxometalate isomeric mixture.  相似文献   

20.
《BBA》2020,1861(8):148208
Photosynthetic microorganisms such as the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) can be exploited for the light-driven synthesis of valuable compounds. Thermodynamically, it is most beneficial to branch-off photosynthetic electrons at ferredoxin (Fd), which provides electrons for a variety of fundamental metabolic pathways in the cell, with the ferredoxin-NADP+ Oxido-Reductase (FNR, PetH) being the main target. In order to re-direct electrons from Fd to another consumer, the high electron transport rate between Fd and FNR has to be reduced. Based on our previous in vitro experiments, corresponding FNR-mutants at position FNR_K190 (Wiegand, K., et al.: “Rational redesign of the ferredoxin-NADP-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production”. Biochim Biophys Acta, 2018) have been generated in Synechocystis cells to study their impact on the cellular metabolism and their potential for a future hydrogen-producing design cell. Out of two promising candidates, mutation FNR_K190D proved to be lethal due to oxidative stress, while FNR_K190A was successfully generated and characterized: The light induced NADPH formation is clearly impaired in this mutant and it shows also major metabolic adaptations like a higher glucose metabolism as evidenced by quantitative mass spectrometric analysis. These results indicate a high potential for the future use of photosynthetic electrons in engineered design cells – for instance for hydrogen production. They also show substantial differences of interacting proteins in an in vitro environment vs. physiological conditions in whole cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号