首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Simultaneous immunofluorescence labelling was used to investigate the patterns of colocalisation of the NK1 tachykinin receptor with other neuronal markers, and hence determine the functional classes of neuron that bear the NK1 receptor in the guinea-pig ileum. In the myenteric plexus, 85% of NK1 receptor-immunoreactive (NK1r-IR) nerve cells had nitric oxide synthase (NOS) immunoreactivity and the remaining 15% were immunoreactive for choline acetyltransferase (ChAT). Of the latter group, about 50% were immunoreactive for both neuropeptide Y (NPY) and somatostatin (SOM), and had the morphologies of secretomotor neurons. Many of the remaining ChAT neurons were immunoreactive for calbindin or tachykinins (TK), but not both. These calbindin immunoreactive neurons had Dogiel type II morphology. No NK1r-IR nerve cells in the myenteric plexus had serotonin or calretinin immunoreactivity. In the submucosal ganglia, 84% of NK1r-IR nerve cells had neuropeptide Y immunoreactivity and 16% were immunoreactive for TK. It is concluded that NK1r-IR occurs in five classes of neuron; namely, in the majority of NOS-immunoreactive inhibitory motor neurons, in ChAT/TK-immunoreactive excitatory neurons to the circular muscle, in all ChAT/NPY/SOM-immunoreactive secretomotor neurons, in a small proportion of ChAT/calbindin myenteric neurons, and in about 50% of ChAT/TK submucosal neurons.  相似文献   

2.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

3.
Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum   总被引:4,自引:0,他引:4  
Previous studies have identified Dogiel type II neurons with cell bodies in the myenteric plexus of guinea-pig ileum to be intrinsic primary afferent neurons. These neurons also have distinctive electrophysiological characteristics (they are AH neurons) and 82-84% are immunoreactive for calbindin. They are the only calbindin-immunoreactive neurons in the plexus. Neurons with analogous shape and electrophysiology are found in submucosal ganglia, but, with antibodies used in previous studies, they lack calbindin immunoreactivity. An antiserum that is more effective in revealing calbindin in the guinea-pig enteric nervous system has been reported recently. In the present work, we found that this antiserum reveals the same population that was previously identified in myenteric ganglia, and does not reveal any further population of myenteric nerve cells. In submucosal ganglia, 9-10% of nerve cells were calbindin immunoreactive with this antiserum. The submucosal neurons with calbindin immunoreactivity were also immunoreactive for choline acetyltransferase, but not for neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP). Small calbindin-immunoreactive neurons (average profile 130 microm2) were calretinin immunoreactive, whereas the large calbindin-immunoreactive neurons (average profile 330 microm2) had tachykinin (substance P) immunoreactivity. Calbindin immunoreactivity was seen in about 50% of the calretinin neurons and 40% of the tachykinin-immunoreactive submucosal neurons. It is concluded that, in the guinea-pig ileum, only one class of myenteric neuron, the AH/Dogiel type II neuron, is calbindin immunoreactive, but, in the submucosal ganglia, calbindin immunoreactivity occurs in cholinergic, calretinin-immunoreactive, secretomotor/vasodilator neurons and AH/Dogiel type II neurons.  相似文献   

4.
The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.  相似文献   

5.
The localisation of NK3 tachykinin receptors in guinea-pig ileum was studied using the fluorescently labelled agonists, Cy3.5-neurokinin A and Cy3.5-kassinin. Binding to nerve cell bodies in the myenteric and submucosal plexuses was visualised using confocal microscopy. Binding to NK1 receptors was blocked by the NK1 receptor antagonist, CP-99994. NK3 receptors, demonstrated by binding in the presence of CP-99994, occurred in 72% of myenteric and 38% of submucosal neurons. Colocalisation with other markers was examined to deduce the classes of neurons with NK3 receptors. In myenteric ganglia, NK3 receptors were present on the following: 73% of calbindin-immunoreactive (IR) intrinsic primary afferent neurons, 63% of calretinin-IR excitatory motor neurons and ascending interneurons, 63% of nitric oxide synthase-IR inhibitory motor neurons and descending interneurons, 79% of strongly neuropeptide Y (NPY)-IR secretomotor neurons, 67% of weakly NPY-IR descending interneurons and motor neurons, and 46% of NK1 receptor-IR neurons. In submucosal ganglia, NK3 receptors were on 65% of calretinin-IR secretomotor/vasodilator neurons, 81% of NPY-IR cholinergic secretomotor neurons, 2% of vasoactive intestinal peptide-IR non-cholinergic secretomotor neurons and were completely absent from substance P-IR intrinsic primary afferent neurons. The results support physiological studies suggesting that NK3 receptors mediate tachykinin transmission between myenteric sensory neurons and to interneurons and/or motor neurons in descending inhibitory and ascending excitatory pathways. Accepted: 22 June 1999  相似文献   

6.
The P2X(2) subtype of purine receptor was localised by immunohistochemistry to nerve cells of the myenteric ganglia of the stomach, small and large intestines of the guinea-pig, and nerve cells of submucosal ganglia in the intestine. Nerve cells with strong and with weak immunoreactivity could be distinguished. Immunoreactivity in both strongly and weakly immunoreactive neurons was absorbed with P2X(2) receptor peptide. In the myenteric plexus, strong immunoreactivity was in nitric oxide synthase (NOS)- and in calbindin-immunoreactive neurons. In all regions, over 90% of NOS-immunoreactive neurons were strongly P2X(2) receptor immunoreactive. The intensity of reaction varied in calbindin neurons; in the ileum, 90% were immunoreactive for the receptor, about one-third having a strong reaction. In the submucosal ganglia, all vasoactive intestinal peptide-immunoreactive neurons were P2X(2) receptor immunoreactive, but there was no receptor immunoreactivity of calretinin or neuropeptide Y neurons. Varicose nerve fibres with P2X(2) receptor immunoreactivity were found in the gastric myenteric ganglia. These fibres disappeared after vagus nerve section. It is concluded that the P2X(2) receptor is expressed by specific subtypes of enteric neurons, including inhibitory motor neurons, non-cholinergic secretomotor neurons and intrinsic primary afferent neurons, and that the receptor also occurs on the endings of vagal afferent fibres in the stomach.  相似文献   

7.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

8.
The neurochemistry of intracardiac neurons in whole-mount preparations of the intrinsic ganglia was investigated. This technique allowed the study of the morphology of the ganglionated nerve plexus found within the atria as well as of individual neurons. Intracardiac ganglia formed a ring-like plexus around the entry of the pulmonary veins and were interconnected by a series of fine nerve fibres. All intracardiac neurons contained immunoreactivity to PGP-9.5, choline acetyl transferase (ChAT) and neuropeptide Y (NPY). Two smaller subpopulations were immunoreactive to calbindin or nitric oxide synthase. Furthermore, a subpopulation (approximately 6%) of PGP-9.5/ChAT/NPY-immunoreactive cells lacking both calbindin and nitric oxide synthase (NOS) was surrounded by pericellular baskets immunoreactive to ChAT and calbindin. Vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activated peptide (PACAP), substance P and tyrosine hydroxylase (TH) immunoreactivity was observed in nerve fibres within the ganglion, but never in neuronal somata. Furthermore, immunoreactivity for NPY was not observed in pericellular baskets surrounding intracardiac neurons, despite being present in all intrinsic neuronal cell bodies. Taken together, the results of this study indicate a moderate level of chemical diversity within the intracardiac neurons of the rat. Such chemical diversity may reflect functional specialisation of neurons in the intracardiac ganglia.This work was supported by a grant-in-aid (G00M0670) from the National Heart Foundation of Australia  相似文献   

9.
Sayegh AI  Ritter RC 《Peptides》2003,24(2):237-244
Cholecystokinin (CCK) is a peptide hormone released from the I-cells of the upper small intestine. CCK evokes a variety of physiological responses, such as stimulation of pancreatic secretion, reduction of food intake and inhibition of gastric emptying. Previously, we reported that CCK activates enteric neurons in the rat. However the specific subpopulations of enteric neurons activated by CCK have not been identified. In the work reported here, we utilized immunohistochemical detection of nuclear Fos, a marker for neuronal activation, and selected phenotypic markers to identify some of the neuronal subpopulations activated by CCK. The phenotypic markers that we examined were: nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calbindin (Cal), Calretinin (Calr), and neurofilament-M (NF-M). We found that in the myenteric plexus of the rat duodenum and jejunum, CCK activated NOS immunoreactive neurons. In the submucosal plexus of duodenum and jejunum, CCK activated Cal, Calr and NF-M immunoreactive neurons. CCK failed to activate NK-1R immunoreactive neurons in either plexus. Our results indicate that CCK activates distinct enteric neurons in the rat upper small intestine. Furthermore the fact that NOS immunoreactive neurons were activated suggests that CCK modulates the activity of inhibitory motor neurons in the myenteric plexus. Expression of Fos immunoreactivity in Calr and Cal immunoreactive neurons is consistent with a role for CCK in modulation of intrinsic sensory and/or secretomotor neuronal activity in the submucosal plexus.  相似文献   

10.
Cholinergic neurons have been revealed in the enteric nervous system by functional and biochemical studies but not by antibodies that provide excellent localisation of the synthesising enzyme, choline acetyltransferase (ChAT), in the central nervous system. In order to determine whether a newly described peripheral form of ChAT (pChAT) is a ChAT enzyme of enteric neurons, we have compared pChAT distribution with that of the common form of ChAT, cChAT, by quantitative analysis of the co-localisation of pChAT and cChAT with other neurochemical markers in enteric neurons of the guinea-pig ileum. We found classes of neuron with strong pChAT immunoreactivity (IR) and others with strong cChAT-IR. In myenteric ganglia, strong pChAT-IR was in calbindin-positive intrinsic primary afferent neurons (IPANs), whereas cChAT-IR of these neurons was weak. Calretinin neurons were immunoreactive for cChAT, but not pChAT. Only 4% of nitric oxide synthase (NOS) neurons (possibly interneurons) were pChAT-immunoreactive, similar to observations with cChAT. NOS-immunoreactive inhibitory motor neurons stained with neither cChAT nor pChAT antisera. In the submucosal ganglia, pChAT-IR was strongly expressed in IPANs (identified by cytoplasmic staining for the neuronal nuclear marker, NeuN) and in neuropeptide Y (NPY)-immunoreactive secretomotor neurons, but not in calretinin-immunoreactive neurons. cChAT-IR occurred weakly in submucosal IPANs and also labelled NPY- and calretinin-immunoreactive neurons. Submucosal vasoactive-intestinal-peptide-immunoreactive neurons (non-cholinergic secretomotor neurons) were not reactive for either form of ChAT.  相似文献   

11.
Nitric oxide synthase (NOS) immunoreactivity occurs in two groups of neurons in the guinea pig small intestine: descending interneurons that are also immunoreactive for choline acetyltransferase (ChAT), and inhibitory motor neurons that lack ChAT immunoreactivity. Interneurons that are involved in local reflexes would be expected to have inputs from intrinsic primary afferent (sensory) neurons, most of which are calbindin-immunoreactive. We examined this possibility using triple staining for NOS, ChAT and calbindin immunoreactivity and investigated the relationships between calbindin-immunoreactive varicosities and the cell bodies of NOS-immunoreactive neurons, using high-resolution confocal microscopy and electron microscopy. By confocal microscopy, we found that the cell bodies of ChAT/NOS interneurons received 84 +/- 23 (mean +/- SD) direct appositions from calbindin-immunoreactive varicosities and that the cell bodies of NOS-inhibitory motor neurons received 82 +/- 20 appositions. Electron-microscopic examination of the relations of 265-calbindin-immunoreactive varicosities, at distances within the resolution of the confocal microscope (300 nm), to 30 NOS-immunoreactive nerve cells indicated that 84% formed close contacts or synapses and 16% were separated from neurons by thin glial cell processes. Thus, each NOS-immunoreactive nerve cell receives about 70 synaptic inputs or close contacts from the calbindin-immunoreactive varicosities of intrinsic primary afferent neurons. It is concluded that there are monosynaptic reflex connections in which intrinsic primary afferent neurons synapse directly with motor neurons and di- or poly-synaptic reflexes in which ChAT- and NOS-immunoreactive neurons are interneurons, interposed between intrinsic primary afferent neurons and NOS-inhibitory neurons.  相似文献   

12.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea.  相似文献   

13.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

14.
Immunohistochemical analysis of neuron types in the mouse small intestine   总被引:4,自引:1,他引:3  
The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/± TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.  相似文献   

15.
To identify neurochemical phenotypes of esophageal myenteric neurons synaptically activated by vagal preganglionic efferents, we immunohistochemically detected the expression of Fos, an immediate early gene product, in whole-mount preparations of the entire esophagus of rats following electrical stimulation of the vagus nerves. When electrical stimulation was applied to either the cervical left (LVN) or right vagus nerve (RVN), neurons with nuclei showing Fos immunoreactivity (IR) were found to comprise approximately 10% of the total myenteric neurons in the entire esophagus. These neurons increased from the oral toward the gastric end of the esophagus, with the highest frequency in the abdominal portion of the esophagus. A significant difference was not found in the number of Fos neurons between the LVN-stimulated and RVN-stimulated esophagus. Double-immunolabeling showed that nitric oxide synthase (NOS)-IR occurred in most (86% and 84% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the entire esophagus. Furthermore, the stimulation of either of the vagus nerves resulted in high proportions (71%-90%) of Fos neurons with NOS-IR, with respect to the total Fos neurons in each segment, in the entire esophagus. However, a small proportion (8% and 7% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the esophagus exhibited choline acetyltransferase (ChAT)-IR. The occurrence-frequency of Fos neurons with ChAT-IR was less than 4% of the total Fos neurons in any segment of the LVN-stimulated and RVN-stimulated esophagus. Some of the Fos neurons with ChAT-IR appeared to be innervated by numerous varicose ChAT-positive nerve terminals. The present results showing that electrical stimulation of the vagus nerves induces a high proportion of Fos neurons with NOS-IR suggests the preferential activation of NOS neurons in the esophagus by vagal preganglionic efferents. This connectivity between the vagal efferents and intrinsic nitrergic neurons might be involved in inhibitory actions on esophageal motility.This study was supported by Grant-in Aids for Scientific Research from Ministry of Education, Sports, and Culture of Japan to H.K. (no. 15500236) and to M.K. (no. 14570065).  相似文献   

16.
17.
The distribution of P2Y2 receptor-immunoreactive (ir) neurons and fibers and coexistence of P2Y2 with P2X2 and P2X3 receptors, neuropeptide Y (NPY), calretinin (CR), calbindin (CB) and nitric oxide synthase (NOS) was investigated with immunostaining methods. The results showed that P2Y2-ir neurons and fibers were distributed widely in myenteric and submucous plexuses of the guinea pig stomach corpus, jejunum, ileum and colon. The typical morphology of P2Y2-ir neurons was a long process with strong positive staining on the same side of the cell body. The P2Y2-ir neurons could be Dogiel type 1. About 40–60% P2X3-ir neurons were immunoreactive for P2Y2 in the myenteric plexus and all the P2X3-ir neurons expressed the P2Y2 receptor in the submucosal plexus; almost all the NPY-ir neurons and the majority of CR-ir neurons were also immunoreactive for P2Y2, especially in the myenteric plexus of the small intestine; no P2Y2-ir neurons were immunoreactive for P2X2 receptors, CB and NOS. It is shown for the first time that S type/Dogiel type 1 neurons with fast P2X and slow P2Y receptor-mediated depolarizations could be those neurons expressing both P2Y2-ir and P2X3-ir and that they are widely distributed in myenteric and submucosal plexuses of guinea pig gut.  相似文献   

18.
Nitric oxide (NO) occurs in various types of cells in the central nervous system. We studied the distribution and morphology of neuronal nitric oxide synthase (NOS)-containing neurons in the visual cortex of mouse and rabbit with antibody immunocytochemistry. We also compared this labeling to that of calbindin D28K, calretinin, and parvalbumin. Staining for NOS was seen both in the specific layers and in selective cell types. The densest concentration of intense anti-NOS immunoreactive (IR) neurons was found in layer VI, while the weak anti-NOS-IR neurons were found in layer II/III in both animals. The NOS-IR neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. Two-color immunofluorescence revealed that only 16.7% of the NOS-IR cells were double-labeled with calbindin D28K in the mouse visual cortex, while more than half (51.7%) of the NOS-IR cells were double-labeled with calretinin and 25.0% of the NOS-IR cells were double-labeled with parvalbumin in mouse. By contrast, 92.4% of the NOS-IR neurons expressed calbindin D28K while only 2.5% of the NOS-IR neurons expressed calretinin in the rabbit visual cortex. In contrast with the mouse, none of the NOS-IR cells in the rabbit visual cortex were double-labeled with parvalbumin. The results indicate that neurons in the visual cortex of both animals express NOS in specific layers and cell types, which do not correlate with the expression of calbindin D28K, calretinin or parvalbumin between the two animals.  相似文献   

19.
20.
The distribution of P2Y6 and P2Y12 receptor-immunoreactive (ir) neurons and fibers and their coexistence with calbindin, calretinin and nitric oxide synthase (NOS) has been investigated with single and double labeling immunostaining methods. The results showed that 30–36% of the ganglion cells in the myenteric plexus are strongly P2Y6 receptor-ir neurons; they are distributed widely in the myenteric plexus of stomach, jejunum, ileum and colon, but not in the submucosal plexus, with a typical morphology of multipolar neurons with a long axon-like process. About 42–46% of ganglion cells in both the myenteric and submucosal plexuses show P2Y12 receptor-ir. About 28–35% of P2Y6 receptor-ir neurons were found to coexist with NOS and 41–47% of them coexist with calretinin, but there was no coexistence of P2Y6 receptor-ir with calbindin. In contrast, all P2Y12 receptor-ir neurons were immunopositive for calbindin, although occasionally P2Y12 receptor-ir neurons without calbindin immunoreactivity were found, while none of the P2Y12 receptor-ir neurons were found to coexist with calretinin or NOS in the gastrointestinal system of guinea pig. The P2Y12 receptor-ir neurons coexpressing calbindin-ir in the small intestine are Dogiel type II/AH, intrinsic primary afferent neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号