首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Decapod crustacean pericardial organs contain extensive neurohormonal reserves which can be released directly into the haemolymph to act as physiological modulators. The present paper concerns the in vivo effects of two pericardial peptides, proctolin and crustacean cardioactive peptide, on cardiovascular dynamics in the crab Cancer magister. Infusion of proctolin into the pericardial sinus caused a slight decrease in heart rate concurrent with a large increase in cardiac stroke volume. It decreased haemolymph flow anteriorly through the paired anterolateral arteries and increased flow posteriorly and ventrally through the posterior aorta and sternal artery, respectively. The threshold for responses occurred at circulating concentrations of 10-9 mol·l-1, and haemolymph flows remained elevated for up to 30 min after peptide infusion. The effects of crustacean cardioactive peptide were less dramatic. Heart rate was not affected but a significant increase in stroke volume was observed. Crustacean cardioactive peptide increased haemolymph flow through the anterolateral arteries and increased scaphognathite rate. The threshold for crustacean cardioactive peptide activity was higher than for proctolin (10-7 mol·l-1 and 10-6 mol·l-1) but the responses to crustacean cardioactive peptide were of longer duration. The effects of proctolin on regional haemeolymph distribution in Cancer magister closely resemble the cardiovascular responses of this species when exposed to hypoxic conditions. These peptides may be implicated as cardiovascular regulators during environmental perturbations.  相似文献   

2.
The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head. Furthermore, we identified a gene sequence in the genomic database from the malaria mosquito Anopheles gambiae that very likely codes for a crustacean cardioactive peptide receptor.  相似文献   

3.
Biological activities of crustacean cardioactive peptide (CCAP; PFCNAFTGCa) and leucomyosuppressin (Lem-MS; pQDVDHVFLRFa) were studied in heterologous bioassays in the larvae and adults of Tenebrio molitor. CCAP exerted a reversible and dose-dependent cardio-stimulatory effect on the semi-isolated heart of the experimental beetles at a concentration of >10(-7) M and induced an effect similar to the endogenic cardio-stimulatory peptide, proctolin. Injections of CCAP (10(-9)-10(-3) M) into 4-day-old adult reproductive females increased the concentration of soluble proteins in hemolymph in comparison to the saline injected controls. Electrophoretic analyses indicated significant increase in the level of two proteins 130 and 170 kDa, and a partial increase of the level of 67-kDa protein. The studies indicated that CCAP increased also free hemolymph sugar concentration in young larvae and adults of the mealworm beetle. The cardio-inhibitory peptide Lem-MS exerted the opposite effect: at concentration 10(-7)-10(-6) M, it significantly decreased the heartbeat frequency. The induced changes were dose-dependent and reversible, but at higher concentrations (>10(-5) M) the stimulatory effect disappeared. Injections of the Lem-MS into young larvae at concentrations 10(-9)-10(-3) M, also increased the free hemolymph sugar level similarly to the CCAP. This work demonstrates the pleiotropic effects of CCAP and Lem-MS in Tenebrio molitor.  相似文献   

4.
Effects of small cardioactive peptide B on the physiology of the isolated heart and gill preparations from the mollusc Aplysia californica were examined. In addition, the effects of small cardioactive peptide B and FMRFamide (Phe-Met-Arg-Phe-NH2) on adenylate cyclase activity were compared in particulate fractions of heart and gill tissues, respectively. Small cardioactive peptide B was found to exert dose-dependent, reversible changes in cardiac activity when perfused through the isolated heart. The EC50 values effecting changes in heart rate and force of contraction were 3 X 10(-11) and 3 X 10(-10) M, respectively; minimum concentrations found to effect changes in heart rate and force of contraction were normally 10(-15) and 10(-12) M, respectively. However, some winter hearts demonstrated threshold sensitivity to small cardioactive peptide B at concentrations as low as 10(-17) M. When perfused through the isolated gill, small cardioactive peptide B was found to suppress the gill withdrawal response amplitude with a threshold concentration of 10(-14) M and an EC50 value of 3 X 10(-11) M. Suppression of the gill withdrawal response amplitude by small cardioactive peptide B was found to be dose dependent and reversible up to a concentration of 10(-9) M. At higher concentrations, the suppression tended to persist irreversibly. Small cardioactive peptide B stimulated adenylate cyclase activity in particulate fractions of both heart and gill tissues with an EC50 of 0.1 and 1.0 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
《Journal of Asia》2000,3(2):59-64
Conjugated linoleic acid (CLA) acts as a potent cancer inhibitor and biological modulator in several animal models by incorporation in the lipid fractions. Now we report the possibility of incorporation of dietary CLA into insect body lipids. Chemically-synthesized CLA from safflower seed oil was supplied to house fly (Musca domestica) larvae and adults with diet supplements at various levels. Amount of CLA in the pupa and adult body was proportional to the concentrations of CLA in the diet. CLA amount in pupae and adults was 0.17 mg/g and 0.41 mg/g of body, respectively, by 0.1% CLA diet (the lowest dosage), whereas it dramatically increased to 3.05 mg/g and 1.51 mg/g of body, respectively, by 10% CLA diet (the highest dosage). The dietary CLA did not show any adverse effects on the development of larvae and pupae, survivorship and fertility of adults, and eclosion of deposited eggs.  相似文献   

6.
Cecropins are antibacterial peptides, induced in Drosophila as part of the humoral immune response to a bacterial invasion. We have used the cloned Drosophila cecropin genes CecA1, A2 and B as probes to study the developmental and tissue specific regulation of this response. The genes are strongly expressed in fat body and hemocytes after injection of bacteria, the CecA genes being much more active than CecB in the fat body. All parts of the fat body and 5-10% of the hemocytes are involved in this response. CecA1 and A2 are most active in larvae and adults; CecB is preferentially active in early pupae. A small peak of constitutive cecropin expression in early pupae appears to be caused by bacteria in the food. Cecropin A, the common product of the CecA1 and A2 genes, was identified in the hemolymph of immunized flies at a concentration of 25-50 microM, enough to kill all tested bacteria except Serratia, a Drosophila pathogen. A useful in vitro system to study the immune response has been found in Schneider's line 2 cells which respond to lipopolysaccharide and laminarin by cecropin expression.  相似文献   

7.
Drosophila Shaw encodes a voltage-insensitive, slowly activating, noninactivating K(+) current. The functional and developmental roles of this channel are unknown. In this study, we use a dominant transgenic strategy to investigate Shaw function and describe a second member of the Shaw family, Shawl. In situ hybridization showed that the two Shaw family genes, Shaw and Shawl, have largely nonoverlapping expression patterns in embryos. Shaw is expressed mainly in excitable cells of the CNS and PNS of late embryos. Shawl is expressed in many nonexcitable cell types: ubiquitously in embryos until the germband extends, then transiently in the developing CNS and PNS, becoming restricted to progressively smaller subsets of the CNS. Ectopic full-length and truncated Shaw localize differently within neurons, and produce uneclosed small pupae and adults with unfurled wings and softened cuticle. This phenotype was mapped to the crustacean cardioactive peptide (CCAP)-neuropeptide circuit. Widespread expression of Shaw in the nervous system results in a reduction in body mass, ether-induced shaking, and lethality. Expression of full-length Shaw had more extreme phenotypic consequences and caused earlier lethality than expression of truncated Shaw in a given GAL4 pattern. Whole cell recordings from ventral ganglion motor neurons expressing the truncated Shaw protein suggest that a major role of Shaw channels in these cells is to contribute to the resting potential.  相似文献   

8.
Molecular genetic analysis indicates that rhythmic changes in the abundance of the Drosophila lark RNA-binding protein are important for circadian regulation of adult eclosion (the emergence or ecdysis of the adult from the pupal case). To define the tissues and cell types that might be important for lark function, we have characterized the spatial and developmental patterns of lark protein expression. Using immunocytochemical or protein blotting methods, lark can be detected in late embryos and throughout postembryonic development, from the third instar larval stage to adulthood. At the late pupal (pharate adult) stage, lark protein has a broad pattern of tissue expression, which includes two groups of crustacean cardioactive peptide (CCAP)-containing neurons within the ventral nervous system. In other insects, the homologous neurons have been implicated in the physiological regulation of ecdysis. Whereas lark has a nuclear distribution in most cell types, it is present in the cytoplasm of the CCAP neurons and certain other cells, which suggests that the protein might execute two different RNA-binding functions. Lark protein exhibits significant circadian changes in abundance in at least one group of CCAP neurons, with abundance being lowest during the night, several hours prior to the time of adult ecdysis. Such a temporal profile is consistent with genetic evidence indicating that the protein serves a repressor function in mediating the clock regulation of adult ecdysis. In contrast, we did not observe circadian changes in CCAP neuropeptide abundance in late pupae, although CCAP amounts were decreased in newly-emerged adults, presumably because the peptide is released at the time of ecdysis. Given the cytoplasmic localization of the lark RNA-binding protein within CCAP neurons, and the known role of CCAP in the control of ecdysis, we suggest that changes in lark abundance may regulate the translation of a factor important for CCAP release or CCAP cell excitability.  相似文献   

9.
FlyNap (triethylamine) is commonly used to anesthetize Drosophila melanogaster fruit flies. The purpose of this study was to determine whether triethylamine is a suitable anesthetic agent for research into circulatory physiology and immune competence in the mosquito, Anopheles gambiae (Diptera: Culicidae). Recovery experiments showed that mosquitoes awaken from traditional cold anesthesia in less than 7 minutes, but that recovery from FlyNap anesthesia does not begin for several hours. Relative to cold anesthesia, moderate exposures to FlyNap induce an increase in the heart rate, a decrease in the percentage of the time the heart contracts in the anterograde direction, and a decrease in the frequency of heartbeat directional reversals. Experiments employing various combinations of cold and FlyNap anesthesia then showed that cold exposure does not affect basal heart physiology, and that the differences seen between the cold and the FlyNap groups are due to a FlyNap-induced alteration of heart physiology. Furthermore, exposure to FlyNap eliminated the cardioacceleratory effect of crustacean cardioactive peptide (CCAP), and reduced a mosquito’s ability to survive a bacterial infection. Together, these data show that FlyNap is not a suitable substitute to cold anesthesia in experiments assessing mosquito heart function or immune competence. Moreover, these data also illustrate the intricate biology of the insect heart. Specifically, they confirm that the neurohormone CCAP modulates heart rhythms and that it serves as an anterograde pacemaker.  相似文献   

10.
The heartbeat of adult Drosophila melanogaster displays two cardiac phases, the anterograde and retrograde beat, which occur in cyclic alternation. Previous work demonstrated that the abdominal heart becomes segmentally innervated during metamorphosis by peripheral neurons that express crustacean cardioactive peptide (CCAP). CCAP has a cardioacceleratory effect when it is applied in vitro. The role of CCAP in adult cardiac function was studied in intact adult flies using targeted cell ablation and RNA interference (RNAi). Optical detection of heart activity showed that targeted ablation of CCAP neurons selectively altered the anterograde beat, without apparently altering the cyclic cardiac reversal. Normal development of the abdominal heart and of the remainder of cardiac innervation in flies lacking CCAP neurons was confirmed by immunocytochemistry. Thus, in addition to its important role in ecdysis behavior (the behavior used by insects to shed the remains of the old cuticle at the end of the molt), CCAP may control the level of activity of the anterograde cardiac pacemaker in the adult fly. Expression of double stranded CCAP RNA in the CCAP neurons (targeted CCAP RNAi) caused a significant reduction in CCAP expression. However, this reduction was not sufficient to compromise CCAP's function in ecdysis behavior and heartbeat regulation.  相似文献   

11.
本文研究了升高环境温度对小粉虫(Alphitobiusdiaperinus,鞘翅目拟步行虫总科)末龄幼虫、蛹以及成虫的失水和热敏性(临界热极值,Criticalthermalmaximum,CTmax)的影响。小粉虫成虫和蛹的CTmax值显著低于末龄幼虫(末龄幼虫:CTmax=48.5±0.5℃;蛹:CTmax=48.0±0.9℃;成虫:CTmax=47.8±1.1℃)。此外,成虫的适应性对其CTmax没有显著的影响。在20至60℃连续记录失水值中,三个龄期之间存在显著差异。随着超过临界点温度(约为40℃)的快速升高,末龄幼虫与成虫的失水程度相近。蛹具有明显低的失水速率,即使在温度高于40℃的情况下。当温度升高10℃时(25-35℃),会造成小粉虫蛹和成虫失水增加2.0倍和2.6倍,分别为:Q10=2.05±0.70和2.49±1.31,而幼虫则为3.52±1.27。当高于35-45℃时,幼虫和成虫失水增加甚快(Q10=6.85±1.90和8.51±2.32)。而蛹在高于35-45℃时失水也增加(Q10=3.76±1.83),但低于幼虫和成虫。小粉虫的蛹处于静止和不取食状态,代谢速率较低,其具有特殊结构的气孔能较好地保持关闭状态,且蛹的表皮由脂肪和蛋白质组成,以上诸因素可解释其失水减少的原因  相似文献   

12.
The dorsal heart of the Indian stick insect, Carausius morosus, is responsible for the anterograde flow of hemolymph to the aorta and into the body cavity. The contraction frequency of the insect heart is known to be influenced by several substances of neural source. Here, a semi‐exposed heart assay was employed to study the effect of an aminergic substance (octopamine) and three neuropeptides (C. morosus hypertrehalosemic hormone [Carmo‐HrTH], crustacean cardioactive peptide [CCAP], and proctolin) on heart contraction. The contraction frequency was measured as beats per minute in adults ligated between the head and the prothorax. All three investigated neuropeptides had a stimulatory effect on heart contraction that lasted approximately 6 min, after which the normal heart beat rate was restored. Proctolin and CCAP stimulated the rate of heart beat also in unligated stick insects, whereas Carmo‐HrTH was active only in ligated insects. The latter could suggest that when the stick insect is not ligated, a competing substance may be released from the head of C. morosus; the competing substance is, apparently, not physiologically active but it binds or blocks access to the receptor of Carmo‐HrTH‐II, thereby rendering the HrTH peptide “not active.” In ligated stick insects, 6.7 × 10?8 M Carmo‐HrTH‐II significantly increased the heart beat rate; higher doses resulted in no further increase, suggesting the saturation of the HrTH receptor. Octopamine inhibited the rate at which the heart contracted in a dose‐dependent manner; inhibition was achieved with 10?4 M of octopamine.  相似文献   

13.
Donini A  Ngo C  Lange AB 《Peptides》2002,23(11):1915-1923
Hindguts from female Vth instar larvae, young adults (1-2 days) and old adults (>10 days) are equally sensitive to the crustacean cardioactive peptide (CCAP), with changes in contraction occurring at a threshold concentration of 10(-9)M and maximal responses observed at concentrations ranging between 10(-7) and 5x10(-6)M. An immunohistochemical examination of the gut of Locusta migratoria with an antiserum raised against CCAP revealed an extensive network of CCAP-like immunoreactive processes on the hindgut and posterior midgut via the 11th sternal nerve arising from the terminal abdominal ganglion. Anterograde filling of the 11th sternal nerve with neurobiotin revealed extensive processes and terminals on the hindgut. Retrograde filling of the branch of the 11th sternal nerve which innervates the hindgut with neurobiotin revealed two bilaterally paired cells in the terminal abdominal ganglion which co-localized with CCAP-like immunoreactivity. Results suggest that a CCAP-like substance acts as a neurotransmitter/neuromodulator at the locust hindgut.  相似文献   

14.
The drugstore beetle, Stegobium paniceum (L.) (Coleoptera: Anobiidae), is a pest of stored medicinal and aromatic plants. Generally, mortality of each stage increased with an increase of temperature and exposure time. Heat tolerance for different stages from highest to lowest was young larvae, old larvae, eggs, adult, and pupae. The mortality after 7 h at 42 degrees C for young larvae, old larvae, eggs, adults, and pupae, respectively, was 16 +/- 5, 31 +/- 6, 48 +/- 3, 63 +/- 8, and 86 +/- 2% (mean +/- SEM). Similar trends for stage specific mortality were seen with the lethal time for 90% mortality (LT90) at 42 degrees C; 773, 144, 12, and 11 h for old larvae, eggs, adults, and pupa respectively. Mortality was too low with young larvae to estimate LT90. The LT90 for young larvae at 42, 45, 50, 55, and 60 degrees C was 25, 20, 3.9, 0.18, and 0.08 h, respectively. The cold tolerance of different stages at 0 degree C from highest to lowest was adults, old larvae, young larvae, pupae, and eggs. The LT90 at 0 degrees C was 298, 153, 151, 89, and 53 h, respectively. The LT90 for adults at 5, -5, -10, and -15 degrees C was 792, 58, 2, and 0.8 h, respectively. The supercooling point of adults was -15.2 +/- 2 degrees C; young larvae, -9.0 +/- 0.8 degrees C; old larvae, -6.5 +/- 0.5 degrees C; and pupae, -4.0 +/- 1.4 degrees C. Heat treatments that control young larvae should control all other stages of S. paniceum. Cold treatments that control adults should control all other stages of S. paniceum. Dried plants stored at 5 degrees C for 45 d or 42 degrees C for 30 h and then kept below 18 degrees C throughout the rest of the year, should remain pest-free without any chemical control.  相似文献   

15.
Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2 μg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms.  相似文献   

16.
We describe the molecular analysis and cellular expression of the insect peptide neurohormone, bursicon. Bursicon triggers the sclerotization of the soft insect cuticle after ecdysis. Using protein elution analyses from SDS gels, we determined the molecular weight of bursicon from different insects to be approximately 30 kDa. Four partial peptide sequences of Periplaneta americana bursicon were obtained from purified nerve cord homogenates separated on two-dimensional gels. Antibodies produced against one of the sequences identified the cellular location of bursicon in different insects and showed that bursicon is co-produced with crustacean cardioactive peptide (CCAP) in the same neurons in all insects tested so far. Additionally, using the partial peptide sequences, we successfully searched the Drosophila genome project for the gene encoding bursicon. With Drosophila as a tool, we can now verify the function of the sequence using transgenic flies. Sequence comparisons also allowed us to verify that bursicon is conserved, corroborating the older data from bioassays and immunohistochemical analyses. The sequence of bursicon will enable further analysis of its function, release, and evolution.  相似文献   

17.
The radiation biology of two geographically isolated populations of the light brown apple moth [Epiphyas postvittana (Walker)] was studied in Australia and New Zealand as an initiation of a SIT/F1 sterility program. Pharate and < or = 2 d pre-emergence pupae were exposed to increasing radiation doses up to a maximum dose of 300 Gy. Fertility and other life history parameters were measured in emerging adults (parental) and their progeny (F1-F3 adults). Parental fecundity was significantly affected by increasing irradiation dose in pharate pupae only. For both populations, parental egg fertility declined with increasing radiation. This was most pronounced for the irradiated parental females whose fertility declined at a higher rate than of irradiated males. At 250 Gy, females < or = 2 d preemergence pupae produced few larvae and no adults at F1. No larvae hatched from 250 Gy-irradiated female pharate pupae. At 300 Gy, males still had residual fertility of 2-5.5%, with pharate pupae being the more radio-sensitive. Radiation-induced deleterious inherited effects in offspring from irradiated males were expressed as increased developmental time in F1 larvae, a reduction in percent F1 female survival, decreased adult emergence and increased cumulative mortality over subsequent generations. Males irradiated at > or = 150 Gy produced few but highly sterile offspring at F1 and mortality was > 99% by F2 egg.  相似文献   

18.
Studies on the effect of a juvenoid, DPE-28 (2,4-dinitrophenyl-2',6'-di-tertiarybutyl phenyl ether) on biology and behaviour of Cx. quinquefasciatus showed that the developmental duration, sex ratio, mating success and blood feeding were considerably affected by the exposure of larvae and pupae to the compound. Exposure of fourth instar larvae to 0.007 (EI90) and 0.0019 (EI50) ppm of DPE-28 prolonged the duration of pupation by 58.6 and 52.4 hr and delayed the adult emergence by 35.4 and 17.7 hr in males and 36.8 and 21.1 hr in females respectively. Exposure of freshly ecdysed pupae to 10 and 5 ppm delayed the adult emergence with respect to the control by 54.3 and 32.4 hr in males and 55.2 and 33.2 hr in females respectively. The sex ratio of the adults emerged from treated larvae and pupae was also affected. The female mosquitoes that survived from the exposed fourth instar larvae and pupae exhibited a low blood engorgement ratio. This depression in blood feeding was more pronounced in adults emerged from treated pupae than that of treated fourth instar larvae. A significant proportion of adults emerged from treated larvae and pupae were able to feed only partially. Mating success of the treated populations declined considerably when crosses were made between the males and females emerged from treated fourth instar larvae and pupae. The adults emerged from treated larvae and pupae showed a significant reduction in the oviposition.  相似文献   

19.
Summary

Testis sheaths from late last instar larvae and mid-developing pupae of Heliothis virescens and Lymantria dispar synthesize ecdysteroid in vitro. Gonadal ecdysteroid can stimulate the production of growth factors from the sheaths which, in turn, promote the growth and development of the genital tract. Ongoing basal synthesis is controlled by positive feedback to exogenous ecdysteroid; titers of this hormone approaching those of molting last instar larvae and developing pupae effect maximum synthesis. These findings suggest that circulating titers of ecdysteroid hormone promote gonadal ecdysteroidogenesis, and thus coordinate the actions of the gonads with metamorphic events in the whole animal. Synthesis of ecdysteroid by testes is initiated, however, by a brain neuropeptide, testis ecdysiotropin (TE). TE is a 21 amino acid peptide of molecular weight 2472 Da. TE boosts basal steroid synthesis by pupal testis sheaths as well. It acts primarily via Gi protein and second messengers diacyl glycerol and low calcium influx, resulting in stimulation of phosphokinase C. Gs protein and its resultant messenger, cyclic AMP, also play roles in activation and inhibition of ecdysteroidogenesis. The interplay of controlling systems probably serves to fine tune a system essential to gonadal development and function.  相似文献   

20.
In many bark beetles (Coleoptera: Curculionidae: Scolytinae), intraspecific competition is a limiting factor governing their population dynamics. The aim of this study was to evaluate the effect of increasing infestation densities on the breeding performance of Tomicus destruens (Wollaston), one of the main pests of Mediterranean pine forests. Six densities (ranging from 0.25 to 1.50 females   dm−2) were tested under laboratory conditions on stone pine logs, assessing the mortality of eggs, larvae, and pupae, and recording the number of emerging adults. Density significantly affected the fertile tract of the maternal galleries, i.e., those containing eggs, which was shorter at densities higher than 0.75. Numbers of eggs, larvae, pupae, and adults per female decreased markedly when density increased from 0.25 to 1.5, although differences were statistically significant only at a density of 0.75 and higher. The lowest mortality was found in larvae reared at a density of 0.25 (17.7%) and the highest in pupae at 1.5 (84.8%). Increasing density affected the pre-emergence stages in different ways, with pupae and larvae suffering the highest increases in mortality (39.5 and 163.6%, respectively). The breeding performance of T. destruens (number of eggs laid reaching adulthood) progressively decreased from 17 to 4% with increasing densities, although at low infestation, the mean number of emerging adults per dm2 of bark increased with density, showing a positive trade-off between female fecundity and female density. In conclusion, breeding densities higher than 0.75 female dm−2 decreased female fecundity and elicited high mortality, mainly in larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号