首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

2.
A new protocol for the production of transgenic pineapple plants was developed. Adventitious buds were induced directly from Agrobacterium-infected leaf bases and stem discs of in vitro plants, bypassing the establishment of callus cultures. Non-chimeric transgenic plants were obtained by multiple subculturing of primary transformants under increasing levels of selection. A total of 42 independent transgenic lines were produced from two cultivars with two different constructs: one containing a modified rice cystatin gene (Oc-IΔD86) and the other with the anti-sense gene to pineapple aminocyclopropane synthase (ACS). GUS histochemical staining provided the first evidence of the non-chimeric nature of the transformed plants. Their non-chimeric nature was further demonstrated by PCR analyses of the DNA extracted from individual leaves of a primary transformed plant and also from multiple plants propagated from a single transformation event. Southern hybridization confirmed random integration patterns of transgenes in the independent lines. For the Oc-IΔD86 gene, the expression at the mRNA level was detected via RT-PCR and its translation was detected by protein blot. Agronomic evaluation and bioassays of the transgenic plants will further validate the utility of this new tool for pineapple improvement.  相似文献   

3.
Summary Mature seed-derived callus from an elite Chinese japonica rice cv. Ewan 5 was cotransformed with two plasmids, pWRG1515 and pRSSGNAl, containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β-glucuronidase gene (gusA) and the snowdrop (Galanthus nivalis) lectin gene (gna) via particle bombardment. Thirty-five independent transgenic rice plants were regenerated from 177 bombarded calluses. Eighty-three percent of the transgenic plants contained all three genes, as revealed by Southern blot analysis. Western blot analysis revealed that 23 out of 29 gna-containing transgenic plants expressed Galanthus nivalis agglutinin (GNA) (79%) at various levels, with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of all three transgenes (gna, hpt and gusA) in the R2 progeny. Amongst the R2 generation two independent homozygous lines were identified that expressed all three transgenes. Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to rice brown planthopper (Nilaparvata lugens, BPH) by decreasing the survival, overall fecundity of BPH, retarding development, and decreasing the feeding of BPH. These BPH-resistant lines have been incorporated into a rice insect resistance breeding program. This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis-based selection, conferred enhanced resistance to BPH.  相似文献   

4.
Maize (Zea mays), in common with a number of other important crop species, has several glutathione S-transferase (GST) isoforms that have been implicated in the detoxification of xenobiotics via glutathione conjugation. A cDNA encoding the maize GST subunit GST-27, under the control of a strong constitutive promoter, was introduced into explants of the wheat (Triticum aestivum L.) lines cv. Florida and L88-31 via particle bombardment, using the phosphinothricin acetyltransferase (pat) gene as a selectable marker. All six independent transgenic wheat lines recovered expressed the GST-27 gene. T1 progeny of these wheat lines were germinated on solid medium containing the chloroacetanilide herbicide alachlor, and tolerance to this herbicide was correlated with GST-27 expression levels. In glasshouse sprays, homozygous T2 plants were resistant not only to alachlor but also to the chloroacetanilide herbicide dimethenamid and the thiocarbamate herbicide EPTC. These additional GST-27 activities, demonstrated via over-expression in a heterologous host, have not been described previously. T2 plants showed no enhanced tolerance to the herbicides atrazine (an s-triazine) or oxyfluorfen (a diphenyl ether). In further experiments, T2 wheat plants were recovered from immature transgenic scutella cultured on medium containing 100 mg/l alachlor, a concentration which killed null segregant and wild-type scutella. These data indicate the potential of the maize GST-27 gene as a selectable marker in wheat transformation.  相似文献   

5.
Glufosinate resistance gene isolated from Streptomyces hygromicinroscopicus (bar) that confers the resistance of herbicide Liberty, a broad-spectrum grass and broadleaf contact herbicide widely used for weed control, was introduced into triploid bermudagrass by Agrobacterium-mediated transformation. Embryogenic calluses derived from stolonous nodal segment were co-cultured with the disarmed strain EHA105 harboring the binary vector pBG1300H containing the bar gene under the control of adh-1 promoter. A total of 18 independent transgenic lines were obtained. The integration of bar gene into plant genome was confirmed by the GUS histochemical staining assay, PCR amplification, and Southern blotting. Herbicide bioassay indicated that the bar-expressing transgenic plants exhibited greater herbicide resistance than the wild type and the non-transformed tissue culture-derived plants.  相似文献   

6.
Transgenic radiata pine (Pinus radiata D. Don) plants containing a Bacillus thuringiensis (Bt) toxin gene, crylAc, were produced by means of biolistic transformation of embryogenic tissue. Using the selectable marker gene nptII and corresponding geneticin selection, 20 independent transgenic lines from five genotypes were established. Over 200 plants regenerated from ten transgenic lines were successfully transferred to soil. The integration and expression of the introduced genes in transgenic tissue and/or plants were confirmed by PCR, Southern hybridisation and neomycin phosphotransferase II (NPTII) and Bt ELISA assays. Bioassays with larvae of the painted apple moth, Teia anartoides, demonstrated that transgenic plants displayed variable levels of resistance to insect damage, with one transgenic line being highly resistant to feeding damage.  相似文献   

7.
Genetic engineering to date has not been used to introduce disease resistance genes into the orchid gene pool. The ferredoxin-like protein gene originally isolated from sweet pepper is thought to function as a natural defense against infection due to its antimicrobial properties. Hence it was reasoned that introduction of this gene might produce Oncidium plants resistant to Erwinia carotovora, the causal agent for the soft rot disease. An expression vector containing sweet pepper ferredoxin-like protein (pflp) cDNA, hph and gusA coding sequence was successfully transformed into protocorm-like bodies (PLBs) of Oncidium orchid, using Agrobacterium tumefaciens strain EHA105. A total of 17 independent transgenic orchid lines was obtained, out of which six transgenic lines (-glucuronidase (GUS) positive) were randomly selected and confirmed by Southern, northern and western blot analyses. A bioassay was conducted on the transgenic lines. Transgenic plants showed enhanced resistance to E. carotovora, even when the entire plant was challenged with the pathogen. Our results suggest that pflp may be an extremely useful gene for genetic engineering strategies in orchids to confer resistance against soft rot disease.  相似文献   

8.
Mature seed‐derived callus from an elite Chinese japonica rice (Oryza sativa L.) cv. Eyi 105 was cotransformed with two plasmids, pWRG1515 and pRSSGNA1,containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β‐glucuronidase gene (gusA) and the snow‐drop (Galanthus nivalis) lectin gene (gna) via particle bombardment. After two rounds of selection on hygromycin‐containing medium, resistant callus was transferred to hygromycin‐containing regeneration medium for plant regeneration. Twenty‐six independent transgenic rice plants were regenerated from 152 bombarded calli with a transformation frequency of 17%. Seventy‐three percent of transgenic plants contained all three genes, which was revealed by PCR/Southern blot analysis. Thirteen out of 19 transgenic plants containing the gna gene expressed GNA (68%) at various levels with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parentplants showing 3:1 Mendelian segregation patterns, we identified three independent homozygous lines containing and expressing all three transgenes.Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to the rice brown planthopper (Nilaparvata lugens, BPH) by decreasing BPH survival and overall fecundity, retarding BPH development and reducing BPH feeding.This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis‐based selection, conferred enhanced resistance to BPH, one of the most damaging insect pests in rice.  相似文献   

9.
In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through theAgrobacterium tumefaciens- mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that thegna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.  相似文献   

10.
11.
12.
We usedAgrobacterium tumefaciens to transform flowering stalk explants of five genotypes of broccoli with a construct containing the neomycin phosphotransferase gene and aBacillus thuringiensis (Bt) gene [CryIA(c) type] optimized for plant expression. Overall transformation efficiency was 6.4%; 181 kanamycin-resistant plants were recovered. Of the 162 kanamycin-resistant plants tested, 112 (69%) caused 100% morality of 1st-instar larvae of aBt-susceptible diamondback moth strain. Southern blots of some resistant transformants confirmed presence of theBt gene. Selected plants that gave 100% mortality of susceptible larvae allowed survival of a strain of diamondback moth that had evolved resistance toBt in the field. F1 hybrids between resistant and susceptible insects did not survive. Analysis of progeny from 26 resistant transgenic lines showed 16 that gave segregation ratios consistent with a single T-DNA integration. Southern analysis was used to verify those plants possessing a single T-DNA integration. Because these transgenic plants kill susceptible larvae and F1 larvae, but serve as a suitable host for resistant ones, they provide an excellent model for tests ofBt resistance management strategies.  相似文献   

13.
J. Wang  K. Zuo  W. Wu  J. Song  X. Sun  J. Lin  X. Li  K. Tang 《Biologia Plantarum》2004,48(4):509-515
Tobacco leaf discs were transformed with a plasmid pBIBnNHX1, containing the selectable marker neomycin phosphotransferase gene (nptII) and Na+/H+ vacuolar antiporter gene from Brassica napus (BnNHX1), via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic plants were regenerated. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the BnNHX1 gene had integrated into plant genome and Northern blot analysis revealed the transgene expression at various levels in transgenic plants. Transgenic plants expressing BnNHX1 had enhanced salt tolerance and could grow and produce seeds normally in the presence of 200 mM NaCl. Analysis for the T1 progenies derived from seven independent transgenic primary transformants expressing BnNHX1 showed that the transgenes in most tested independent T1 lines were inherited at Mendelian 3:1 segregation ratios. Transgenic T1 progenies could express BnNHX1 and had salt tolerance at levels comparable to their T0 parental lines. This study implicates that the BnNHX1 gene represents a promising candidate in the development of crops for enhanced salt tolerance by genetic engineering.  相似文献   

14.
Snowdrop (Galanthus nivalis) lectin has previously been shown to have anti-feedant and insecticidal activity towards sap-sucking insects. However, its effectiveness against plant-parasitic mites has not been demonstrated. In this study, the commercial papaya (Carica papaya L.) cultivar Kapoho, which is highly susceptible to mites, was transformed with the snowdrop lectin (G. nivalis agglutin [GNA]) gene. Polymerase chain reaction confirmed the presence of the transgene and six independent transformed lines were selected for expression analysis. Western blot analysis showed that the lines expressed a recombinant protein with a molecular weight similar to that of the native snowdrop lectin. Leaf extracts containing the recombinant GNA protein agglutinated trypsinized rabbit erythrocytes thus, showing the GNA protein to be biologically active. ELISA and indirect measurement from the agglutination assay showed there to be variation in GNA expression among the lines produced. A laboratory bioassay using carmine spider mites (Tetranychus cinnabarinus) suggested improved pest resistance in the transgenic papaya plants. This is the first report that a transgenic plant expressing the GNA gene possesses enhanced resistance to a plant-parasitic mite.  相似文献   

15.
Flooding is one of the most serious environmental stresses that affect plant growth and productivity. Flooding causes premature senescence which results in leaf chlorosis, necrosis, defoliation, cessation of growth and reduced yield. This study was conducted to determine the effects of autoregulated cytokinin production on the flooding tolerance of Arabidopsis thaliana plants. A chimeric gene containing the senescence-specific SAG12 promoter and the ipt gene coding for isopentenyl transferase, a rate-limiting enzyme in the cytokinin biosynthesis pathway, was constructed. The chimeric gene was introduced into Arabidopsis plants by Agrobacterium-mediated vacuum infiltration. Four transgenic lines were chosen for flooding tolerance determinations. DNA hybridization analysis and PCR confirmed that all four of the transgenic lines carried the ipt gene. The segregation of kanamycin resistance in the T2 generation indicated 1 to 3 integration events. GUS expression and RT-PCR of the ipt gene confirmed the senescence-specificity of the SAG12 promoter. Morphologically, the transgenic lines appeared healthy and normal. Transgenic plants began to flower at the same time as wild-type plants, but the period from flowering to senescence was lengthened by 7 to 12 days. Tolerance of the transgenic plants to waterlogging and complete submergence was assayed in three independent experiments. All four transgenic lines were consistently more tolerant to flooding than wild-type plants. The results indicated that endogenously produced cytokinin can regulate senescence caused by flooding stress, thereby, increasing plant tolerance to flooding. This study provides a novel mechanism to improve flooding tolerance in plants.  相似文献   

16.
Chen R  Li H  Zhang L  Zhang J  Xiao J  Ye Z 《Plant cell reports》2007,26(7):895-905
Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different pepper (Capsium annuum L.) lines; however, none of them has yet been cloned. In this study, a candidate root-knot nematode resistance gene (designated as CaMi) was isolated from the resistant pepper line PR 205 by degenerate PCR amplification combined with the RACE technique. Expression profiling analysis revealed that this gene was highly expressed in roots, leaves, and flowers and expressed at a lower level in stems and was not detectable in fruits. To verify the function of CaMi, a sense vector containing the genomic DNA spanning the full coding region of CaMi was constructed and transferred into root-knot nematode susceptible tomato plants. Sixteen transgenic plants carrying one to five copies of T-DNA inserts were generated from two nematode susceptible tomato cultivars. RT-PCR analysis revealed that the expression levels of CaMi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared to untransformed susceptible plants, and that the resistance was inheritable. Ultrastructure analysis showed that nematodes led to the formation of galls or root knots in the susceptible lines while in the resistant transgenic plants, the CaMi gene triggered a hypersensitive response (HR) as well as many necrotic cells around nematodes. Rugang Chen and Hanxia Li are contributed equally to this work.  相似文献   

17.
Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.  相似文献   

18.
Antimicrobial peptide magainin II, isolated from the skin of the African clawed toad, has shown activity in vitro against a range of micro-organisms. Transgenic potato lines expressing a synthetic magainin gene show improved resistance to the bacterial plant pathogen, Erwinia carotovora. Culturable bacterial and fungal communities associated with magainin-producing potato plants were compared with those communities from the non-transgenic parental control and with another potato cultivar. Total numbers of aerobic bacteria recovered from the leaves of the magainin-producing line, its non-transgenic parent line and an unrelated cultivar did not differ significantly. There were no detectable differences in the numbers of Gram-positive and Gram-negative bacteria, pseudomonad populations or fungi recovered from foliage from the three plant lines. Bacterial populations recovered from the roots of a magainin-expressing plant line did not differ significantly from populations recovered from the unmodified parental line. Tubers from the magainin-expressing transgenic potatoes, however, had significantly lower total numbers of bacteria than tubers produced by unmodified plants. In vitro testing of rhizosphere isolates against magainin analogues found that bacterial isolates varied in their susceptibility to the peptides. There were no significant differences in the total numbers of fungi and yeasts recovered from the various plant lines, with one exception: higher numbers of fungi were recovered from roots of magainin-expressing plants than the unmodified control plants.  相似文献   

19.
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.  相似文献   

20.
The US Department of Energy recently released a 6.8X draft of the genome sequence for Nisqually-1, a genotype of black cottonwood (Populus trichocarpa). To improve its utility for functional genomics research, having an efficient means for transformation and regeneration is necessary. To examine several parameters known to affect the transformation rate, we cocultivated leaf disc and stem explants with a strain ofAgrobacterium tumefaciens harboring a binary plasmid vector containing genes for both neomycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Shoot regeneration from stem explants was observed in the presence of kanamycin when thidiazuron was incorporated in the selection medium. Transformation efficiency was influenced by the level of thidiazuron to which explants were exposed during the early stages of shoot induction. Histochemical assays revealed expression of theGUS gene in leaf, stem, and root tissues of transgenic plants. Polymerase chain reaction confirmed the presence of both selectable marker and reporter genes in all lines that stained positive for β-glucuronidase activity. By use of our modified protocol, transgenic plants were recovered within 6 mo at an efficiency of 6%, adequate to produce a large number of transgenic events with modest effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号