首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cap structure and the poly(A) tail of eukaryotic mRNAs act synergistically to enhance translation. This effect is mediated by a direct interaction of eukaryotic initiation factor 4G and poly(A) binding protein (PABP), which brings about circularization of the mRNA. Of the two recently identified PABP-interacting proteins, one, Paip1, stimulates translation, and the other, Paip2, which competes with Paip1 for binding to PABP, represses translation. Here we studied the Paip2-PABP interaction. Biacore data and far-Western analysis revealed that Paip2 contains two binding sites for PABP, one encompassing a 16-amino-acid stretch located in the C terminus and a second encompassing a larger central region. PABP also contains two binding regions for Paip2, one located in the RNA recognition motif (RRM) region and the other in the carboxy-terminal region. A two-to-one stoichiometry for binding of Paip2 to PABP with two independent K(d)s of 0.66 and 74 nM was determined. Thus, our data demonstrate that PABP and Paip2 could form a trimeric complex containing one PABP molecule and two Paip2 molecules. Significantly, only the central Paip2 fragment, which binds with high affinity to the PABP RRM region, inhibits PABP binding to poly(A) RNA and translation.  相似文献   

2.
The 5' cap and 3' poly(A) tail of eukaryotic mRNAs act synergistically to enhance translation. This synergy is mediated via interactions between eIF4G (a component of the eIF4F cap binding complex) and poly(A) binding protein (PABP). Paip2 (PABP-interacting protein 2) binds PABP and inhibits translation both in vitro and in vivo by decreasing the affinity of PABP for polyadenylated RNA. Here, we describe the functional characteristics of Paip2B, a Paip2 homolog. A full-length brain cDNA of Paip2B encodes a protein that shares 59% identity and 80% similarity with Paip2 (Paip2A), with the highest conservation in the two PABP binding domains. Paip2B acts in a manner similar to Paip2A to inhibit translation of capped and polyadenylated mRNAs both in vitro and in vivo by displacing PABP from the poly(A) tail. Also, similar to Paip2A, Paip2B does not affect the translation mediated by the internal ribosome entry site (IRES) of hepatitis C virus (HCV). However, Paip2A and Paip2B differ with respect to both mRNA and protein distribution in different tissues and cell lines. Paip2A is more highly ubiquitinated than is Paip2B and is degraded more rapidly by the proteasome. Paip2 protein degradation may constitute a primary mechanism by which cells regulate PABP activity in translation.  相似文献   

3.
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.  相似文献   

4.
The 3' poly(A) tail of eukaryotic mRNAs plays an important role in the regulation of translation. The poly(A) binding protein (PABP) interacts with eukaryotic initiation factor 4G (eIF4G), a component of the eIF4F complex, which binds to the 5' cap structure. The PABP-eIF4G interaction brings about the circularization of the mRNA by joining its 5' and 3' termini, thereby stimulating mRNA translation. The activity of PABP is regulated by two interacting proteins, Paip1 and Paip2. To study the mechanism of the Paip1-PABP interaction, far-Western, glutathione S-transferase pull-down, and surface plasmon resonance experiments were performed. Paip1 contains two binding sites for PABP, PAM1 and PAM2 (for PABP-interacting motifs 1 and 2). PAM2 consists of a 15-amino-acid stretch residing in the N terminus, and PAM1 encompasses a larger C-terminal acidic-amino-acid-rich region. PABP also contains two Paip1 binding sites, one located in RNA recognition motifs 1 and 2 and the other located in the C-terminal domain. Paip1 binds to PABP with a 1:1 stoichiometry and an apparent K(d) of 1.9 nM.  相似文献   

5.
The poly(A)-binding protein (PABP) is a unique translation initiation factor in that it binds to the mRNA 3' poly(A) tail and stimulates recruitment of the ribosome to the mRNA at the 5' end. PABP activity is tightly controlled by the PABP-interacting protein 2 (Paip2), which inhibits translation by displacing PABP from the mRNA. Here, we describe a close interplay between PABP and Paip2 protein levels in the cell. We demonstrate a mechanism for this co-regulation that involves an E3 ubiquitin ligase, EDD, which targets Paip2 for degradation. PABP depletion by RNA interference (RNAi) causes co-depletion of Paip2 protein without affecting Paip2 mRNA levels. Upon PABP knockdown, Paip2 interacts with EDD, which leads to Paip2 ubiquitination. Supporting a critical role for EDD in Paip2 degradation, knockdown of EDD expression by siRNA leads to an increase in Paip2 protein stability. Thus, we demonstrate that the turnover of Paip2 in the cell is mediated by EDD and is regulated by PABP. This mechanism serves as a homeostatic feedback to control the activity of PABP in cells.  相似文献   

6.
The eukaryotic mRNA 3' poly(A) tail acts synergistically with the 5' cap structure to enhance translation. This effect is mediated by a bridging complex, composed of the poly(A) binding protein (PABP), eIF4G, and the cap binding protein, eIF4E. PABP-interacting protein 1 (Paip1) is another factor that interacts with PABP to coactivate translation. Here, we describe a novel human PABP-interacting protein (Paip2), which acts as a repressor of translation both in vitro and in vivo. Paip2 preferentially inhibits translation of a poly(A)-containing mRNA, but has no effect on the translation of hepatitis C virus mRNA, which is cap- and eIF4G-independent. Paip2 decreases the affinity of PABP for polyadenylate RNA, and disrupts the repeating structure of poly(A) ribonucleoprotein. Furthermore, Paip2 competes with Paip1 for PABP binding. Thus, Paip2 inhibits translation by interdicting PABP function.  相似文献   

7.
In eukaryotes, the poly(A)-binding protein (PABP) is one of the important factors for initiation of messenger RNA translation. PABP activity is regulated by the PABP-interacting proteins (Paips), which include Paip1, Paip2A, and Paip2B. Human Paip1 has three different isoforms. Here, we report the crystal structure of the middle domain of Paip1 isoform 2 (Paip1M) as determined by single-wavelength anomalous dispersion phasing. The structure reveals a crescent-shaped domain consisting of 10 α-helices and two antiparallel β-strands forming a β-hairpin. The 10 α-helices are arranged as five HEAT repeats which form a double layer of α helices with a convex and a concave surface. Despite low sequence identity, the overall fold of Paip1M is similar to the middle domain of human eIF4GII and yeast eIF4GI. Moreover, the amino-acid sequence motif and the local structure of eIF4G involved in binding of eIF4A, are conserved in Paip1. The structure reported here is the first of a member of the Paip family, thereby filling a gap in our understanding of initiation of eukaryotic mRNA translation in three dimensions.  相似文献   

8.
In animals, the PABC domain from poly (A)-binding protein recruits proteins containing a specific interacting motif (PAM-2) to the mRNP complex. These proteins include Paip1, Paip2, and eukaryotic release factor 3 (eRF3), all of which regulate PABP function in translation. The following reports the solution structure of PABC from Triticum avestium (wheat) poly (A)-binding protein determined by NMR spectroscopy. Wheat PABC (wPABC) is an alpha-helical protein domain, which displays a fold highly similar to the human PABC domain and contains a PAM-2 peptide binding site. Through a bioinformatics search, several plant proteins containing a PAM-2 site were identified including the early response to dehydration protein (ERD-15), which was previously shown to regulate PABP-dependent translation. The plant PAM-2 proteins contain a variety of conserved sequences including a PABP-interacting 1 motif (PAM-1), RNA binding domains, an SMR endonuclease domain, and a poly (A)-nuclease regulatory domain, all of which suggest a function in either translation or mRNA metabolism. The proteins identified are well conserved throughout plant species but have no sequence homologues in metazoans. We show that wPABC binds to the plant PAM-2 motif with high affinity through a conserved mechanism. Overall, our results suggest that plant species have evolved a distinct regulatory mechanism involving novel PABP binding partners.  相似文献   

9.
Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP.  相似文献   

10.
11.
Togavirus nucleocapsids have a characteristic icosahedral structure and are composed of multiple copies of a capsid protein complexed with genomic RNA. The assembly of rubella virus nucleocapsids is unique among togaviruses in that the process occurs late in virus assembly and in association with intracellular membranes. The goal of this study was to identify host cell proteins which may be involved in regulating rubella virus nucleocapsid assembly through their interactions with the capsid protein. Capsid was used as bait to screen a CV1 cDNA library using the yeast two-hybrid system. One protein that interacted strongly with capsid was p32, a cellular protein which is known to interact with other viral proteins. The interaction between capsid and p32 was confirmed using a number of different in vitro and in vivo methods, and the site of interaction between these two proteins was shown to be at the mitochondria. Interestingly, overexpression of the rubella virus structural proteins resulted in clustering of the mitochondria in the perinuclear region. The p32-binding site in capsid is a potentially phosphorylated region that overlaps the viral RNA-binding domain of capsid. Our results are consistent with the possibility that the interaction of p32 with capsid plays a role in the regulation of nucleocapsid assembly and/or virus-host interactions.  相似文献   

12.
13.
The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the capbinding protein eIF4E and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this "closed loop" mRNP among other effects enhance the affinity of eIF4E for the 5' cap by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picomavirus' internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to initiation complex formation. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP.  相似文献   

14.
I Singh  A Helenius 《Journal of virology》1992,66(12):7049-7058
The mechanism by which Semliki Forest virus nucleocapsids are uncoated was analyzed in living cells and in vitro. In BHK-21 cells, uncoating occurred with virtually complete efficiency within 1 to 2 min after the nucleocapsids entered the cytoplasm. It was inhibited by monensin, which blocks nucleocapsid penetration from endosomes. As previously shown for Sindbis virus (G. Wengler and G. Wengler, Virology 134:435-442, 1984), the capsid proteins from incoming nucleocapsids became associated with ribosomes. The ribosome-bound capsid proteins were distributed throughout the cytoplasm, while the viral RNA remained associated with vacuolar membranes. Using purified nucleocapsids and ribosomes in vitro, we established that ribosomes alone were sufficient for uncoating. Their role was to release the capsid proteins from nucleocapsids and irreversibly sequester them, in a process independent of energy and translation. The process was stoichiometric rather than catalytic, with a maximum of three to six capsid proteins bound to each ribosome. More than 80% of the capsid proteins could thus be removed from the viral RNA, resulting in the formation of nucleocapsid remnants whose sedimentation coefficients progressively decreased from 140S to 80S as uncoating proceeded.  相似文献   

15.
Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.  相似文献   

16.
The poly(A)-binding protein (PABP) is an essential protein found in all eukaryotes and is involved in an extensive range of cellular functions, including translation, mRNA metabolism, and mRNA export. Its C-terminal region contains a peptide-interacting PABC domain that recruits proteins containing a highly specific PAM-2 sequence motif to the messenger ribonucleoprotein complex. In humans, these proteins, including Paip1, Paip2, eRF3 (eukaryotic release factor 3), Ataxin-2, and Tob2, are all found to regulate translation through varying mechanisms. The following reports poly(A) nuclease (PAN) as a PABC-interacting partner in both yeast and humans. Their interaction is mediated by a PAM-2 motif identified within the PAN3 subunit. This site was identified in various fungal and animal species suggesting that the interaction is conserved throughout evolution. Our results indicate that PABP is directly involved in recruiting a deadenylase to the messenger ribonucleoprotein complex. This demonstrates a novel role for the PABC domain in mRNA metabolic processes and gives further insight into the function of PABP in mRNA maturation, export, and turnover.  相似文献   

17.
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2A(pro)) or 3C protease (3C(pro)). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3C(pro) is more efficient in cleaving PABP in ribosome-enriched fractions than 2A(pro) in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3C(pro)-mediated cleavage and inhibits 2A(pro)-mediated cleavage. These results suggest that 3C(pro) plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.  相似文献   

18.
The eukaryotic mRNA 3′ poly(A) tail and the 5′ cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the cap-binding protein eIF4E, and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this “closed loop” mRNA among other effects enhance the affinity of eIF4E for the 5′ cap, by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picornavirus’ internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to the formation of the initiation complex. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 684–693. The article is published in the original.  相似文献   

19.
Rubella virus (RV), a member of Togaviridae, is an important human pathogen that can cause severe defects in the developing fetus. Compared to other togaviruses, RV replicates very slowly suggesting that it must employ effective mechanisms to delay the innate immune response. A recent study by our laboratory revealed that the capsid protein of RV is a potent inhibitor of apoptosis. A primary mechanism by which RV capsid interferes with programmed cell death appears to be through interaction with the pro‐apoptotic Bcl‐2 family member Bax. In the present study, we report that the capsid protein also blocks IRF3‐dependent apoptosis induced by the double‐strand RNA mimic polyinosinic‐polycytidylic acid. In addition, analyses of cis‐acting elements revealed that phosphorylation and membrane association are important for its anti‐apoptotic function. Finally, the observation that hypo‐phosphorylated capsid binds Bax just as well as wild‐type capsid protein suggests that interaction with this pro‐apoptotic host protein in and of itself is not sufficient to block programmed cell death. This provides additional evidence that this viral protein inhibits apoptosis through multiple mechanisms.  相似文献   

20.
The PABP [poly(A)-binding protein] is able to interact with the 3' poly(A) tail of eukaryotic mRNA, promoting its translation. Cleavage of PABP by viral proteases encoded by several picornaviruses and caliciviruses plays a role in the abrogation of cellular protein synthesis. We report that infection of MT-2 cells with HIV-1 leads to efficient proteolysis of PABP. Analysis of PABP integrity was carried out in BHK-21 (baby-hamster kidney) and COS-7 cells upon individual expression of the protease from several members of the Retroviridae family, e.g. MoMLV (Moloney murine leukaemia virus), MMTV (mouse mammary tumour virus), HTLV-I (human T-cell leukaemia virus type I), SIV (simian immunodeficiency virus), HIV-1 and HIV-2. Moreover, protease activity against PABP was tested in a HeLa-cell-free system. Only MMTV, HIV-1 and HIV-2 proteases were able to cleave PABP in the absence of other viral proteins. Purified HIV-1 and HIV-2 proteases cleave PABP1 directly at positions 237 and 477, separating the two first RNA-recognition motifs from the C-terminal domain of PABP. An additional cleavage site located at position 410 was detected for HIV-2 protease. These findings indicate that some retroviruses may share with picornaviruses and caliciviruses the capacity to proteolyse PABP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号