首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A peptidase that cleaved neurotensin at the Pro10-Tyr11 peptide bond, leading to the formation of neurotensin-(1-10) and neurotensin-(11-13), was purified nearly to homogeneity from rat brain synaptic membranes. The enzyme appeared to be monomeric with a molecular weight of about 70,000-75,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography filtration. Isoelectrofocusing indicated a pI of 5.9-6. The purified peptidase could be classified as a neutral metallopeptidase with respect to its sensitivity to pH and metal chelators. Thiol-blocking agents and acidic and serine protease inhibitors had no effect. Studies with specific peptidase inhibitors clearly indicated that the purified enzyme was distinct from enzymes capable of cleaving neurotensin at the Pro10-Tyr11 bond such as proline endopeptidase and endopeptidase 24-11. The enzyme was also distinct from other neurotensin-degrading peptidases such as angiotensin-converting enzyme and a recently purified rat brain soluble metalloendopeptidase. The peptidase displayed a high affinity for neurotensin (Km = 2.6 microM). Studies on its specificity revealed that neurotensin-(9-13) was the shortest neurotensin partial sequence that was able to fully inhibit [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule as well as substitutions in positions 8, 9, and 11 by D-amino acids strongly decreased the inhibitory potency of neurotensin. Among 20 natural peptides, only angiotensin I and the neurotensin-related peptides (xenopsin and neuromedin N) were found as potent as unlabeled neurotensin.  相似文献   

2.
Specific inhibition of endopeptidase 24.16 by dipeptides.   总被引:7,自引:0,他引:7  
The inhibitory effect of various dipeptides on the neurotensin-degrading metallopeptidase, endopeptidase 24.16, was examined. These dipeptides mimick the Pro10-Tyr11 bond of neurotensin that is hydrolyzed by endopeptidase 24.16. Among a series of Pro-Xaa dipeptides, the most potent inhibitory effect was elicited by Pro-Ile (Ki approximately 90 microM) with Pro-Ile greater than Pro-Met greater than Pro-Phe. All the Xaa-Tyr dipeptides were unable to inhibit endopeptidase 24.16. The effect of Pro-Ile on several purified peptidases was assessed by means of fluorigenic assays and HPLC analysis. A 5 mM concentration of Pro-Ile does not inhibit endopeptidase 24.11, endopeptidase 24.15, angiotensin-converting enzyme, proline endopeptidase, trypsin, leucine aminopeptidase, pyroglutamyl aminopeptidase I and carboxypeptidase B. The only enzyme that was affected by Pro-Ile was carboxypeptidase A, although it was with a 50-fold lower potency (Ki approximately 5 mM) than for endopeptidase 24.16. By means of fluorimetric substrates with a series of hydrolysing activities, we demonstrate that Pro-Ile can be used as a specific inhibitor of endopeptidase 24.16, even in a complex mixture of peptidase activities such as found in whole rat brain homogenate.  相似文献   

3.
Abstract: We recently cloned endopeptidase-24.16 (neurolysin; EC 3.4.24.16), a neurotensin-degrading peptidase likely involved in the physiological termination of the neurotensinergic signal in the central nervous system and in the gastrointestinal tract. We stably transfected human kidney cells with the pcDNA3-λ7aB1 construction bearing the whole open reading frame encoding the rat brain peptidase. Transfectants displayed endopeptidase-24.16 immunoreactivity and exhibited QFS- and neurotensin-hydrolyzing activities, the biochemical and specificity properties of which fully matched those observed with the purified murine enzyme. Cryoprotection experiments and substrate degradation by intact plated cells indicated that transfectants exhibited a membrane-associated form of endopeptidase-24.16, the catalytic site of which clearly faced the extracellular domain. Transfected cells were unable to secrete the enzyme. Overall, our experiments indicate that we have obtained stably transfectant cells that overexpress an enzymatic activity displaying biochemical properties identical to those of purified endopeptidase-24.16. The membrane-associated counterpart and lack of secretion of the enzyme were clearly reminiscent of what was observed with pure cultured neurons, but not with astrocytes. Therefore, the transfected cell model described here could prove useful for establishing, by a mutagenesis approach, the structural elements responsible for the "neuronal" phenotype exhibited by the enzyme in transfected cells.  相似文献   

4.
The metabolism of neurotensin in vitro, in various membrane preparations and cell lines of central and peripheral origins was studied. Neurotensin degradation products were separated by HPLC and identified by either amino acid analysis or by their retention times. Peptidases responsible for the cleavages were identified by means of specific fluorigenic substrates or inhibitors. Although the patterns of neurotensin inactivation varied according to the tissue source in all cases, a major primary cleavage occurred at the Pro10-Tyr11 bond, leading to the biologically inactive fragments NT1-10 and NT11-13. A novel neurotensin-degrading metallopeptidase was responsible for this cleavage. Interestingly, it was the only peptidase that was ubiquitously detected. In addition, endopeptidase 24.11 (EC 3.4.24.11) contributed to this cleavage in rat brain synaptic membranes as well as in circular and longitudinal smooth muscle plasma membranes from dog ileum.  相似文献   

5.
The present article describes the interaction of neurotensin with specific receptors in pure primary cultured neurons and the mechanisms by which this peptide is inactivated by these cells. Neurotensin binding sites are not detectable in nondifferentiated neurons and appear during maturation. The binding at 37 degrees C of [monoiodo-Tyr3]neurotensin to monolayers of neurons 96 h after plating is saturable and characterized by a dissociation constant of 300 pM and a maximal binding capacity of 178 fmol/mg of protein. The binding parameters as well as the specificity of these receptors toward neurotensin analogues reveal close similarities between the binding sites present in primary cultured neurons and those described in other membrane preparations or cells. Neurotensin is rapidly degraded by primary cultured neurons. The sites of primary inactivating cleavages are the Pro7-Arg8, Arg8-Arg9, and Pro10-Tyr11 bonds. Proline endopeptidase is totally responsible for the cleavage at the Pro7-Arg8 bond and contributes to the hydrolysis mainly at the Pro10-Tyr11 site. However, the latter breakdown is also generated by a neurotensin-degrading neutral metallopeptidase. The cleavage at the Arg8-Arg9 bond is due to a peptidase that can be specifically inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanyl-p- aminobenzoate. The secondary processing occurring on neurotensin degradation products are: a bestatin-sensitive aminopeptidasic conversion of neurotensin11-13 to free Tyr11, and a rapid cleavage of neurotensin8-13 by proline endopeptidase. A model for the inactivation of neurotensin in primary cultured neurons is proposed and compared to that previously described for purified rat brain synaptic membranes.  相似文献   

6.
1. Nuclear fraction of cortex and synaptosomal fraction of hippocampus of rat brain were preincubated with ATP and different, "second messengers" as well as some "classical" neurotransmitters and then incubated with Glp6[125I]Tyr8SP6-11 (JP). 2. It was found that different neurotransmitters and especially "second messengers" might be involved in the activation or inhibition of peptidase I and II. 3. Activation of different protein kinases results in substantial modulation of degradation of JP (SP C-terminal fragment). 4. The data confirm that products of one peptidase might be inhibitors of the second peptidase acting on JP, although the second enzyme might be affected additionally in conditions activating different protein kinase systems.  相似文献   

7.
In this report we describe cloning and expression of rat adenosine kinase (AK) in Esccherichaia coli cells as a fusion protein with 6xHis. The recombinant protein was purified and polyclonal antibodies to AK were generated in rabbits. Immunoblot analysis of extracts obtained from various rat tissues revealed two protein bands reactive with anti-AK IgG. The apparent molecular mass of these bands was 48 and 38 kDa in rat kidney, liver, spleen, brain, and lung. In heart and muscle the proteins that react with AK antibodies have the molecular masses of 48 and 40.5 kDa. In order to assess the relative AK mRNA level in rat tissues we used the multiplex PCR technique with beta-actin mRNA as a reference. We found the highest level of AK mRNA in the liver, which decreased in the order kidney > spleen > lung > heart > brain > muscle. Measurement of AK activity in cytosolic fractions of rat tissues showed the highest activity in the liver (0.58 U/g), which decreased in the order kidney > spleen > lung > brain > heart > skeletal muscle. Kinetic studies on recombinant AK as well as on AK in the cytosolic fraction of various rat tissues showed that this enzyme is not affected by phosphate ions. The data presented indicate that in the rat tissues investigated at least two isoforms of adenosine kinase are expressed, and that the expression of the AK gene appears to have some degree of tissue specificity.  相似文献   

8.
We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes will be compared to that previously established for membranes from central origin.  相似文献   

9.
"Enkephalinase," a membrane-bound peptidase hydrolyzing the Gly3-Phe4 amide bond of enkephalins, initially characterized in brain, was purified from a rat kidney microsomal fraction. After differential solubilization with Triton X-100, the use of DEAE-Sephadex, concanavalin A, and hydroxylapatite chromatography led to a 2000-fold purification, close to homogeneity. Renal enkephalinase appears to be a glycoprotein Mr = 92,000-95,000 with catalytic properties and sensitivity to chelating agents and inhibitors (Thiorphan, phosphoramidon) very similar to those of the cerebral enzyme. The enzyme co-purified until the final step with "renal brush-border neutral proteinase" (EC 3.4.24.11) activity assayed with 125I-insulin B chain as substrate and displaying similar sensitivity to inhibitors. The specificity of the purified enkephalinase has been studied using either peptides derived from the enkephalins or model peptides of general formula (Ala)m-Tyr-(Ala)n as substrates. In all cases the bond cleaved was that involving the amino group of an aromatic residue, specificity being also defined by the nature of the neighboring residue on the COOH-terminal side. A free carboxyl in the latter residue was essential in the two series of substrates, indicating that enkephalinase more efficiently functions as a dipeptidyl carboxypeptidase than as an endopeptidase.  相似文献   

10.
Dopaminochrome formation is catalyzed by commercially available purified peroxidases (EC 1.11.1.7) such as horseradish, lacto- and myelo-peroxidase using dopamine, hydrogen peroxide or promethazine sulfoxide as substrates. A rat brain fraction (RBF) catalyzes a similar reaction and its catalytic power increases after preincubation with hydrogen peroxide/ascorbic acid. The activity of both the purified enzymes and the RBF preparation is inhibited by carnosine and characterized by excess substrate inhibition. The enzymes recognize different substrates but show the highest affinity for dopamine. The RBF fraction is strongly buffered against oxidation by compounds such as glutathione and by bioreductive enzymes such as DT-diaphorase (EC 1.6.99.2) which can use as a substrate menadione or dopaminochrome. The rat brain dopamine peroxidizing activity appeared to be mostly bound to the synaptosomal fraction. The reaction catalyzed by the purified peroxidases was followed by electron spin resonance spectroscopy and, unlike that catalyzed by RBF, was shown to produce the signal of a transient dopamine-o-semiquinone radical.  相似文献   

11.
Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino-terminal targeting signals. Removal of the signals is carried out by specific, membrane-bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide.  相似文献   

12.
The authors studies the effects of blood serum and IgG fraction from dogs immunized with brain and blood sera from patients with multiple sclerosis and schizophrenia on lipid peroxidation in rat brain homogenates. Measured the content of diene conjugates (DC) and malonic dialdehyde (MDA) in the rat brain after administering the IgG fraction. It was established that antioxidant activity of blood sera and IgG fraction from control animals and donors was significantly higher as compared to experimental. Administration of the IgG fraction brought about an increase in the content of DC and MDA in the brain of experimental animals. It is concluded that complement-dependent brain antibodies present in the blood serum of patients with schizophrenia and multiple sclerosis potentiate lipid peroxidation in the cerebral tissue and that the unsophisticated and informative method for antibody determination may be used in clinical practice.  相似文献   

13.
The aminopeptidase activity in the brain which converts vasopressin into centrally active metabolites, was quantitated on basis of the release of 3H-Phe from the substate [3H-Phe3]vasopressin and separation by hydrophobic interaction chromatography on mini-columns. After subcellular fractionation of whole rat brain homogenates the highest specific activity of the peptidase was recovered in membrane fractions, in particular microsomes and the P3 fraction, and the cytosol. The peptidase activity was present in all brain areas. Highest activity was measured in membranes of the bulbus olfactorius, preoptical area and cerebellum. Lowest activity was found in the medulla oblongata and striatum. The peptidase activity is not restricted to the vasopressin system per se, but may have a more general role in neuropeptide metabolism.  相似文献   

14.
There is a high prevalence of islet cell antibodies (ICA) and autoantibodies detected against an islet cell protein of Mr 64,000 at the time of clinical diagnosis of insulin-dependent diabetes (IDDM). In view of the biphasic immune response after antigen presentation, the purpose of this study was to determine the presence of ICA and antibodies against the 64,000 islet antigen after separation of IgM from IgG to prevent interference between the two antibody classes. Plasma samples from 10 newly diagnosed IDDM children and 10 healthy controls were precipitated with polyethylene glycol (PEG), and the crude Ig was subjected to Sephacryl S-300 chromatography to separate IgM and IgG. ICA determined by indirect immunofluorescence on frozen sections of human pancreas showed reduced background immunofluorescence intensity in the purified fractions compared with crude plasma. The number of ICA-positive samples among the IDDM patients increased from 7/10 in plasma to 9/10 in the IgG fraction. There was an increase in the ICA titer in 6/9 of the positive samples. All purified IgM samples were ICA negative. Immunoprecipitation experiments by using Nonidet P-40 detergent lysates of [35S]methionine-labeled neonatal rat islets demonstrated that the 64,000 autoantibodies were in the IgG fraction. We found 7/10 IDDM samples to be positive, whereas all controls were negative. The background in the autoradiographic analysis was markedly reduced in the IgG fractions compared with immunoprecipitates with crude or PEG-purified plasma and the IgM fraction. ICA titers did not correlate to the ability of the IgG fraction to precipitate the 64,000 autoantigen. It is concluded that both the ICA and 64,000 autoantibodies are primarily of the IgG class at the time of clinical onset of IDDM, and that purification of IgG from human IDDM plasma facilitates the detection of the rat islet cell 64,000 antigen.  相似文献   

15.
Host IgG is a component of the surface coat of Trypanosoma lewisi; it is specifically acquired during infection in the rat, concomitant with a rise in titer of trypanostatic (ablastic) activity of host serum. Host IgG was eluted from trypomastigotes at 7 to 9 days postinfection with a high salt-low pH buffer. Surface coats and trypanosome ultrastructure were not notably altered by the elution procedure, as determined by electron microscopy. Rat IgG was removed and purified from the trypanosome eluates on an immunoadsorbent column made with the IgG fraction of anti-rat IgG serum coupled to Sepharose beads. Concentrated column eluates, by comparison with a standard, were shown to be rat IgG by immunoelectrophoresis and SDS polyacrylamide gel electrophoresis. As a control, IgG from normal rat serum was purified by the same technique. IgG-negative trypanosomes harvested from immunosuppressed rats bound IgG purified from surface coats of trypanosomes, but not IgG purified from normal rat serum, as demonstrated by subsequent labelling with FITC-conjugated, rabbit anti-rat IgG. The IgG purified from surface coats inhibited the reproduction of T. lewisi in an in vitro assay, but purified, normal IgG did not. These data show that antigen-specific host IgG, adsorbed to the surface of T. lewisi, is ablastic antibody.  相似文献   

16.
Dipeptidyl peptidase III (DPP III) was purified to homogeneity from rat liver cytosol. The calculated molecular weight of the purified enzyme was 82845.6 according to TOF-MS and 82000 on non-denaturing PAGE, and 82000 on SDS-PAGE in the absence or presence of beta-mercaptoethanol. These findings suggest that the enzyme exists in a monomeric form in rat liver cytosol. The enzyme rapidly hydrolyzed the substrate Arg-Arg-MCA and moderately hydrolyzed Gly-Arg-MCA in the pH range of 7.5 to 9.5. The Km, k(cat) and k(cat)/Km values of DPP III at optimal pH (pH 8.5) were 290 microM, 18.0 s(-1) and 62.1 s(-1) x nM(-1) for Arg-Arg-MCA and 125 microM, 4.53 s(-1) and 36.2 s(-1) x nM(-1) for Ala-Arg-MCA, respectively. DPP III was potently inhibited by EDTA, 1,10-phenanthroline, DFP, PCMBS and NEM. These findings suggest that DPP III is an exo-type peptidase with characteristics of a metallo- and serine peptidase. For further information on the molecular structure, we screened a rat liver cDNA library using affinity-purified anti-rat DPP III rabbit IgG antibodies, determined the cDNA structure and deduced the amino acid sequence. The cDNA, designated as lambdaRDIII-11, is composed of 2640 bp and encodes 738 amino acids in the coding region. Although the enzyme has a novel zinc-binding motif, HEXXXH, DPP III is thought to belong to family 1 in clan MA in the metalloprotease kingdom. The DPP III antigen was detected in significant amounts in the cytosol of various rat tissues by immunohistochemical examination.  相似文献   

17.
Rat liver cytosol has low hydrolytic activity against [3H]methylcasein at neutrality, but activity increases greatly on addition of various compounds such as poly-L-lysine, N-ethylmaleimide, and sodium dodecyl sulfate, suggesting that it contains latent proteolytic activity. The latent enzyme was found to be stabilized in the presence of 20% glycerol and to be activated by addition of poly-L-lysine. The latent enzyme was purified from a crude extract of rat liver to apparent homogeneity in the presence of 20% glycerol by conventional chromatographic techniques. The purified enzyme showed endoproteolytic activity toward various proteins when it was activated by the compounds listed above. It preferentially degraded N-substituted tripeptide substrates with a basic amino acid at the carboxyl terminus, as well as peptides containing neutral hydrophobic amino acids. It did not require activation for these peptidase activities, in contrast to its activity toward large proteins. Interestingly, a proteinase and a trypsin-like and a chymotrypsin-like peptidase activity could not be separated by customary chromatographic methods but were distinguishable by their sensitivities to various inhibitors, activators, and covalent modifiers, suggesting that the enzyme has three distinct active sites within a single protein. The enzyme seems to be a seryl endopeptidase showing maximal activity at neutral and weakly alkaline pH values. Thus, the enzyme is a unique protease with latent multifunctional catalytic sites. The distribution of the protease in soluble extracts of various rat tissues and cells was examined quantitatively by an enzyme immunoassay. The enzyme level was highest in liver and also in spleen, stomach, lung, small intestine, and kidney, but was low in heart, diaphragm, skeletal muscle, brain, and skin. The concentrations of enzyme in some established cell lines including hepatoma and rat kidney cells were comparable to that in normal liver hepatocytes. The enzyme was found mainly in the cytosol fraction, although a small amount was associated with microsomal membranes, suggesting that it is an extralysosomal protease. Immunohistochemical staining of the liver and skeletal muscles showed that the protease is distributed diffusely in panlobular hepatocytes with slight centrilobar predominance and is present in Kupffer cells, vascular endothelial cells, and bile duct epithelial cells in the liver and also diffusely in the intermyofibrillar spaces and vascular endothelial cells in skeletal muscle. The quantitative data obtained in the present study indicate the presence of the protease in the cytosol fraction of all rat tissues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Dipeptidyl peptidase IV, a kidney brush-border serine peptidase.   总被引:11,自引:11,他引:0  
Dipeptidyl peptidase IV, an enzyme that releases dipeptides from substrates with N-terminal sequences of the forms X-Pro-Y or X-Ala-Y, was purified 300-fold from pig kidney cortex. The kidney is the main source of the enzyme, where it is one of the major microvillus-membrane proteins. Several other tissues contained demonstrable activity against the usual assay substrate glycylproline 2-naphthylamide. In the small intestine this activity was greatly enriched in the microvillus fraction. In all tissues examined, the activity was extremely sensitive to inhibition by di-isopropyl phosphorofluoridate (Dip-F), but relatively resistant to inhibition by phenylmethylsulphonyl fluoride. It is a serine proteinase which may be covalently labelled with [32P]Dip-F, and is the only enzyme of this class in the microvillus membrane. The apparent subunit mol.wt. estimated by sodium dodecyl-sulphate/polyacrylamide-gel electrophoresis and by titration with [32P]Dip-F was 130 000. Gel-filtration and sedimentation-equilibrium methods gave values in the region of 280 000, which is consistent with a dimeric structure, a conclusion supported by electron micrographs of the purified enzyme. Among other well-characterized serine proteinases, this enzyme is unique in its membrane location and its large subunit size. Investigation of the mode of attack of the peptidase on oligopeptides revealed that it could hydrolyse certain N-blocked peptides, e.g. Z-Gly-Pro-Leu-Gly-Pro. In this respect it is acting as an endopeptidase and as such may merit reclassification and renaming as microvillus-membrane serine peptidase.  相似文献   

19.
The mechanisms by which neurotensin (NT) was inactivated by rat fundus plasma membranes were characterized. Primary inactivating cleavages occurred at the Arg8-Arg9, Pro10-Tyr11, and Ile12-Leu13 peptidyl bonds. Hydrolysis at the Arg8-Arg9 bond was fully abolished by the use of N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanine-p- aminobenzoate, a result indicating the involvement at this site of a recently purified soluble metallopeptidase. Hydrolysis of the Pro10-Tyr11 bond was totally resistant to N-benzyloxycarbonyl-prolyl-prolinal and thiorphan, an observation suggesting that the peptidase responsible for this cleavage was different from proline endopeptidase and endopeptidase 24.11 and might correspond to a NT-degrading neutral metallopeptidase recently isolated from rat brain synaptic membranes. The enzyme acting at the Ile12-Leu13 bond has not yet been identified. Secondary cleavages occurring on NT degradation products were mainly generated by bestatin-sensitive aminopeptidases and post-proline dipeptidyl aminopeptidase. The content in NT-metabolizing peptidases present in rat fundus plasma membranes is compared with that previously established for purified rat brain synaptic membranes.  相似文献   

20.
Rat C regions mu, gamma 1, gamma 2a, gamma 2b, gamma 2c, epsilon, and alpha have been characterized by means of chimeric antibody technology. A set of rat/mouse Ag-specific (anti-4-hydroxy-3-nitrophenacetyl) antibodies was constructed that differ only in the H chain constant region but carry identical V region and L chain, both of which are of mouse origin. All rat constant regions could be expressed and m.w. were as expected from the protein sequence. A slight variation in mobility within the IgG subclasses allowed us to establish a hierarchy for the sizes of the four gamma H chains; gamma 2b greater than gamma 1 greater than gamma 2c greater than gamma 2a. Rat IgG2c and IgG2b could be purified on both protein A and protein G while rat IgG2a could only be purified on protein G. Rat IgM and IgG2b were the most potent in C-mediated hemolysis. This was not simply a consequence of the amount of C1q bound because IgG2c bound C1q efficiently but was relatively poor in cell lysis. In ADCC using human effector and target cells, IgG2b and IgG1 were the most effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号