首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Caenorhabditis elegans genome encodes a series of hedgehog-related genes, which are thought to have evolved and diverged from an ancestral Hh gene. They are classified into several families based on their N-terminal domains. Here, we analyze the expression and function of a member of the warthog gene family, wrt-5, that lacks the Hint/Hog domain. wrt-5 is expressed in seam cells, the pharynx, pharyngeal-intestinal valve cells, neurons, neuronal support cells, the excretory cell, and the reproductive system. WRT-5 protein is secreted into the extracellular space during embryogenesis. Furthermore, during larval development, WRT-5 protein is secreted into the pharyngeal lumen and the pharyngeal expression changes in a cyclical manner in phase with the molting cycle. Deletion mutations in wrt-5 cause embryonic lethality, which are temperature sensitive and more severe at 15 degrees C than at 25 degrees C. Animals that hatch exhibit variable abnormal morphology, for example, bagging worms, blistering, molting defects, or Roller phenotypes. We examined hypodermal cell junctions using the AJM-1Colon, two colonsGFP marker in the wrt-5 mutant background and observed cell boundary abnormalities in the arrested embryos. AJM-1Colon, two colonsGFP protein is also misplaced in pharyngeal muscle cells in the absence of WRT-5. In conclusion, we show that wrt-5 is an essential gene that - despite its lack of a Hint domain - has multiple functions in C. elegans and is implicated in cell shape integrity.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Caenorhabditis elegans gene ubc-25 encodes a novel type of an E2 ubiquitin transferase domain (UBCc) protein, which is highly conserved in multicellular animals, but which is not present in the genomes of fungi or plants. To identify the cellular localization of UBC-25 during the development of C. elegans, we used a ubc-25::gfp reporter gene construct. These experiments showed that ubc-25 expression starts during embryogenesis and that it is restricted to neurons and muscle cells in all later stages of development as well as in adult animals. RNA interference with ubc-25 caused late-onset paralysis of most muscular functions such as locomotion, egg laying, and defecation. We therefore propose that ubc-25 in C. elegans is required for the maintenance (homeostasis) of neuromuscular functions by contributing to a tissue specific protein modification pathway, and we speculate that the adult onset phenotype results from the accumulation of target proteins which fail to be degraded.  相似文献   

10.
11.
12.
Caenorhabditis elegans contains a set of six cluster-type homeobox (Hox) genes that are required during larval development. Some of them, but unlike in flies not all of them, are also required during embryogenesis. It has been suggested that the control of the embryonic expression of the worm Hox genes might differ from that of other species by being regulated in a lineal rather than a regional mode. Here, we present a trans-species analysis of the cis-regulatory region of ceh-13, the worm ortholog of the Drosophila labial and the vertebrate Hox1 genes, and find that the molecular mechanisms that regulate its expression may be similar to what has been found in species that follow a regulative, non-cell-autonomous mode of development. We have identified two enhancer fragments that are involved in different aspects of the embryonic ceh-13 expression pattern. We show that important features of comma-stage expression depend on an autoregulatory input that requires ceh-13 and ceh-20 functions. Our data show that the molecular nature of Hox1 class gene autoregulation has been conserved between worms, flies, and vertebrates. The second regulatory sequence is sufficient to drive correct early embryonic expression of ceh-13. Interestingly, this enhancer fragment acts as a response element of the Wnt/WG signaling pathway in Drosophila embryos.  相似文献   

13.
Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.  相似文献   

14.
15.
Cyclic nucleotide-gated (CNG) channels encoded by tax-4 and tax-2 genes are required for chemo- and thermo-sensation in Caenorhabditis elegans. Here we report the identification and the characterization of cng-3, a new CNG channel gene, found in C. elegans. CNG-3 contains six putative transmembrane regions and a cyclic nucleotide-binding domain that show high homology with CNG channels of higher animals as well as TAX-4. The expression of cng-3 is detected from early stages in worm development and restricted in five sensory neurons of amphid including AFD neuron. While a cng-3 null mutant displays normal chemotaxis to volatile odorants, the mutant worms exhibit impaired thermal tolerance. These results indicate that CNG-3, a new member of CNG channel subunits, may play a critical role in sensation or response of thermal stress in C. elegans.  相似文献   

16.
17.
18.
19.
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号