首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland–Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection.  相似文献   

3.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.  相似文献   

4.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

5.
Identification of actionable mutations in advanced stage non-squamous non-small-cell lung cancer (NSCLC) patients is recommended by guidelines as it enables treatment with targeted therapies. In current practice, mutations are identified by next-generation sequencing of tumor DNA (tDNA-NGS), which requires tissue biopsies of sufficient quality. Alternatively, circulating tumor DNA (ctDNA) could be used for mutation analysis. This prospective, multicenter study establishes the diagnostic value of ctDNA analysis by droplet digital PCR (ctDNA-ddPCR) in patients with primary lung cancer.CtDNA from 458 primary lung cancer patients was analyzed using a panel of multiplex ddPCRs for EGFR (Ex19Del, G719S, L858R, L861Q and S768I), KRAS G12/G13 and BRAF V600 mutations. For 142 of 175 advanced stage non-squamous NSCLC patients tDNA-NGS results were available to compare to ctDNA-ddPCR. tDNA-NGS identified 98 mutations, of which ctDNA-ddPCR found 53 mutations (54%), including 32 of 45 (71%) targetable driver mutations. In 2 of these 142 patients, a mutation was found by ctDNA-ddPCR only. In 33 advanced stage patients lacking tDNA-NGS results, ctDNA-ddPCR detected 15 additional mutations, of which 7 targetable.Overall, ctDNA-ddPCR detected 70 mutations and tDNA-NGS 98 mutations in 175 advanced NSCLC patients. Using an up-front ctDNA-ddPCR strategy, followed by tDNA-NGS only if ctDNA-ddPCR analysis is negative, increases the number of mutations found from 98 to 115 (17%). At the same time, up-front ctDNA-ddPCR reduces tDNA-NGS analyses by 40%, decreasing the need to perform (additional) biopsies.  相似文献   

6.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   

7.
Wang ZC  Wang XM  Jiao BH  Jin YX  Miao MY  Zhu KJ  Ni QG 《IUBMB life》2003,55(3):133-137
A new PCR based method was developed to detect deleted mitochondrial DNA (mtDNA). Peripheral blood cell DNA was obtained from a victim who was accidently exposed to a 60Co radiation source in 1990. Using the DNA as template, first PCR was performed to generate multiple products including true deletions and artifacts. The full length product was recovered and used as template of secondary PCR. The suspicious deletion product of mtDNA could be confirmed only if it was yielded by first PCR. Using either original primers or their nested primers, the suspicious deletion product was amplified and authenticated as a true deletion product. The template was recovered and determined to be a deletion by sequencing directly. The results show that a new mtDNA deletion, which spans 889 bp from nt 11688 to nt 12576, was detected in the peripheral blood cells of the victim. It indicates that this new PCR-based method was more efficient at detecting small populations of mtDNA deletion than other routine methods. MtDNA deletion was found in the victim, suggesting the relationship between the deletion and phenotypes of the disease.  相似文献   

8.
Infertility affects about 10-15% of all couples attempting pregnancy with infertility attributed to the male partner in approximately half of the cases. Proposed causes of male infertility include sperm motility disturbances, Y chromosome microdeletions, chromosomal abnormalities, single gene mutations, and sperm mitochondrial DNA (mtDNA) rearrangements. To investigate the etiology of decreased sperm fertility and motility of sperm and to develop an appropriate therapeutic strategy, the molecular basis of these defects must be elucidated. In this study, we aimed to reveal the relationships between the genetic factors including sperm mtDNA mutations, Y chromosome microdeletions, and sperm parameters that can be regarded as candidate factors for male infertility. Thirty men with a history of infertility and 30 fertile men were recruited to the study. Y chromosome microdeletions were analyzed by multiplex PCR. Mitochondrial genes ATPase6, Cytb, and ND1, were amplified by PCR and then analyzed by direct sequencing. No Y chromosome microdeletions were detected in either group. However, a total of 38 different nucleotide substitutions were identified in the examined mitochondrial genes in both groups, all of which are statistically non-significant. Fifteen substitutions caused an amino acid change and 12 were considered novel mutations. As a conclusion, mtDNA mutations and Y chromosome microdeletions in male infertility should be examined in larger numbers in order to clarify the effect of genetic factors.  相似文献   

9.
10.
通过比较多个HIV(人免疫缺陷病毒)分离株的核苷酸序列,我们选择膜基因上7373—7514位的一段保守区为目的片段合成了引物1(5′—AGCAGCAGGAAGCACTATGGGC—3′)和引物2(5′—CCAGACTGTGAGTTGCAACA—3′),并分别以质粒PⅢexE7和MT4-HIV-1 DNA,为模板进行了PCR反应及敏感性试验。结果表明,用PCR法可检测出1~10个质粒分子及1×10~6个细胞中一个感染细胞。因此我们推论,本法可应用于AIDS临床标本的检测。  相似文献   

11.
PCR检测伪狂犬病病毒DNA   总被引:11,自引:0,他引:11  
 根据伪狂犬病病毒 (PRV)gB基因的序列 ,设计并合成了一对引物 ,以闽A株细胞培养毒为模板 ,筛选最佳反应条件 ,建立了检测PRV的PCR方法 应用该方法对Fb、Bartha、BJ、GD、V2F4、S、S3、SR、Buk、Shope、Norden、MinkⅢ、HB、F8、F9、F12等毒株的细胞培养液进行基因扩增 ,均获得了分子量为 2 81bp的特异性目的DNA片段 ,而对Vero细胞与FMDV、SVDV、HCV、PRRSV、JEV、PPV等病毒进行检测 ,结果均为阴性 ,没有出现交叉反应 对PRV毒株扩增的产物测序 ,结果序列与文献报道一致 ,证明PCR扩增产物和方法的特异性 对 1994~ 2 0 0 0年期间送检的临床样品和保存的PRV毒种 ,用病毒分离、双抗体夹心ELISA和PCR等 3种方法进行检测 ,结果前 2种方法检测为阳性的 ,PCR检测均为阳性 ;PCR检测为阴性 ,前 2种方法检测也为阴性 ;可是 ,前 2种方法检测为阴性的 ,PCR却检测出部分阳性 ;经x2 检验 ,证明PCR检出率明显高于前 2种方法的检出率 对PRV闽A株细胞毒提取物DNA进行检测 ,其最低检出量为 15 8pg 对 1999~ 2 0 0 0年期间广东、福建、海南等省的 31个大中型猪场送检的 191份病料进行检测 .结果病料阳性率为 2 6 2 % ( 50 191) ,猪场阳性率为 71% ( 2 2 31) 实验结果表明 ,所建立的PCR技术可用于伪狂犬病的快速诊断  相似文献   

12.
13.
Cardiomyopathies and mitochondrial DNA mutations   总被引:4,自引:0,他引:4  
Our former studies concerning mitochondrial DNA mutations were reviewed in this article. A 7.4 kb deletion between the D-loop and ATPase 6 genes was detected in myocardial tissue obtained at autopsy from patients with myocardial infarction, diabetes mellitus and also patients treated with adriamycin. A case with diabetes mellitus and hypertrophic cardiomyopathy is demonstrated which revealed a point mutation from adenine to guanine at position 3243 within tRNALeu(UUR).  相似文献   

14.
本文利用HBV DNA基因组preC和C区的一套引物,以PCR法检测了26例健康正常人血清和95例免疫标志各异、临床症状不同的乙肝或可疑乙肝患者的血清,前者无1例检出HBV DNA,后者共检出的66例血 清存在HBV DNA。该方法特异性强,适用于检测任一亚型的HBV DNA,一轮PCR最低可检出0.1pg的HBV DNA。  相似文献   

15.
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.  相似文献   

16.
Detection of mutations in DNA.   总被引:1,自引:0,他引:1  
Methods for detecting known and unknown mutations are becoming increasingly important as new disease genes are identified and new mutations are found in them. These methods are also expensive and time consuming. Over the past year major efforts have been directed towards developing new assays and making current assays faster and cheaper.  相似文献   

17.
Lessons from mitochondrial DNA mutations.   总被引:1,自引:0,他引:1  
The small, maternally inherited mitochondrial DNA (mtDNA) has turned out to be a hotbed of pathogenic mutations: 13 years into the era of "mitochondrial medicine", over 100 pathogenic point mutations and countless rearrangements have been associated with a variety of multisystemic or tissue-specific human diseases. MtDNA-related disorders can be divided into two major groups: those due to mutations in genes affecting mitochondrial protein synthesis in toto and those due to mutations in specific protein-coding genes. Pathogenesis is only partially explained by the rules of mitochondrial genetics and remains largely uncharted territory. Therapy is still woefully inadequate, but a number of promising approaches are being developed.  相似文献   

18.
The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R 2?=?1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0?~?5?×?108 and 0?~?5?×?107 cells per gram of soil, respectively (n?=?5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract?1 as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA?1) at ≥5?×?105 MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y?=?a?·?x) revealed excellent quantitative agreement between the two technologies (a?=?0.98, R 2?=?0.97 in the CupMBT set and a?=?0.90, R 2?=?0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.  相似文献   

19.
Efficient methods for the detection of mutations are of fundamental importance in research and in diagnostics. By detection of a DNA sequence alteration that cosegregates with a clinical phenotype in an affected family, the gene at fault may be identified and assigned a function. Mutation detection methods are also a rate-limiting factor for the clinical application of DNA diagnostics. Currently a large number of techniques are in use to scan for new mutations and to distinguish among previously established sequence variants. Here, some of the problems connected with mutation detection are discussed together with principles on which current and future mutation detection assays can be based.  相似文献   

20.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号