首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past, segments were defined by landmarks such as muscle attachments, notably by Snodgrass, the king of insect anatomists. Here, we show how an objective definition of a segment, based on developmental compartments, can help explain the dorsal abdomen of adult Drosophila. The anterior (A) compartment of each segment is subdivided into two domains of cells, each responding differently to Hedgehog. The anterior of these domains is non-neurogenic and clones lacking Notch develop normally; this domain can express stripe and form muscle attachments. The posterior domain is neurogenic and clones lacking Notch do not form cuticle; this domain is unable to express stripe or form muscle attachments. The posterior (P) compartment does not form muscle attachments. Our in vivo films indicate that early in the pupa the anterior domain of the A compartment expresses stripe in a narrowing zone that attracts the extending myotubes and resolves into the attachment sites for the dorsal abdominal muscles. We map the tendon cells precisely and show that all are confined to the anterior domain of A. It follows that the dorsal abdominal muscles are intersegmental, spanning from one anterior domain to the next. This view is tested and supported by clones that change cell identity or express stripe ectopically. It seems that growing myotubes originate in posterior A and extend forwards and backwards until they encounter and attach to anterior A cells. The dorsal adult muscles are polarised in the anteroposterior axis: we disprove the hypothesis that muscle orientation depends on genes that define planar cell polarity in the epidermis.  相似文献   

2.
3.
The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.  相似文献   

4.
5.
6.
Specialized mechanical connection between exoskeleton and underlying muscles in arthropods is a complex network of interconnected matrix constituents, junctions and associated cytoskeletal elements, which provides prominent mechanical attachment of the epidermis to the cuticle and transmits muscle tensions to the exoskeleton. This linkage involves anchoring of the complex extracellular matrix composing the cuticle to the apical membrane of tendon cells and linking of tendon cells to muscles basally. The ultrastructural arhitecture of these attachment complexes during molting is an important issue in relation to integument integrity maintenance in the course of cuticle replacement and in relation to movement ability. The aim of this work was to determine the ultrastructural organization of exoskeleton - muscles attachment complexes in the molting terrestrial isopod crustaceans, in the stage when integumental epithelium is covered by both, the newly forming cuticle and the old detached cuticle. We show that the old exoskeleton is extensively mechanically connected to the underlying epithelium in the regions of muscle attachment sites by massive arrays of fibers in adult premolt Ligia italica and in prehatching embryos and premolt marsupial mancas of Porcellio scaber. Fibers expand from the tendon cells, traverse the new cuticle and ecdysal space and protrude into the distal layers of the detached cuticle. They likely serve as final anchoring sites before exuviation and may be involved in animal movements in this stage. Tendon cells in the prehatching embryo and in marsupial mancas display a substantial apicobasally oriented transcellular arrays of microtubules, evidently engaged in myotendinous junctions and in apical anchoring of the cuticular matrix. The structural framework of musculoskeletal linkage is basically established in described intramarsupial developmental stages, suggesting its involvement in animal motility within the marsupium.  相似文献   

7.
Recognition of muscle attachment sites and their modification has been an important tool in anthropologic and paleontologic research, but has been compromised by limited ability to recognise sites of tendinous attachments. We investigated bone–tendon (three sites) and bone–muscle (six sites) interfaces in six pairs of femora across a broad taxonomic spectrum of higher amniote archosaurs (both recent and fossil) by epi-illumination microscopy. Direct fleshy and indirect tendinous muscle attachments were identified by dissection of fresh specimens and examination of fossils and the surface microscopic changes identified at those locations. Examination revealed bone modifications specific to each type of muscle insertion, allowing them to be identified and distinguished. Application of a surface microscopy technique not only permits more confident localisation of tendinous attachments, but for the first time allows recognition of sites of direct fleshy muscle attachments – in a reproducible manner across phylogenetic lines.  相似文献   

8.
During metamorphosis, the adult muscles of the Drosophila abdomen develop from pools of myoblasts that are present in the larva. The adult myoblasts express twist in the third larval instar and the early pupa and are closely associated with nerves. Growing adult nerves and the twist-expressing cells migrate out across the developing abdominal epidermis, and as twist expression declines, the myoblasts begin to synthesize beta 3 tubulin. There follows a process involving cell fusion and segregation into cell groups to form multinucleate muscle precursors. These bipolar precursors migrate at both ends to find their correct attachment points. beta 3 tubulin expression continues at least until 51 h APF by which time the adult muscle pattern has been established.  相似文献   

9.
Two physiologically distinct types of muscles, the direct and indirect flight muscles, develop from myoblasts associated with the Drosophila wing disc. We show that the direct flight muscles are specified by the expression of Apterous, a Lim homeodomain protein, in groups of myoblasts. This suggests a mechanism of cell-fate specification by labelling groups of fusion competent myoblasts, in contrast to mechanisms in the embryo, where muscle cell fate is specified by single founder myoblasts. In addition, Apterous is expressed in the developing adult epidermal muscle attachment sites. Here, it functions to regulate the expression of stripe, a gene that is an important element of early patterning of muscle fibres, from the epidermis. Our results, which may have broad implications, suggest novel mechanisms of muscle patterning in the adult, in contrast to embryonic myogenesis.  相似文献   

10.
In insects, specialized mesodermal cells serve as templates to organize myoblasts into distinct muscle fibers during embryogenesis. In the grasshopper embryo, large mesodermal cells called muscle pioneers extend between the epidermal attachment points of future muscle fibers and serve as foci for myoblast fusion. In the Drosophila embryo, muscle founder cells serve a similar function, organizing large numbers of myoblasts into larval muscles. During the metamorphosis of Drosophila, nearly all larval muscles degenerate and are replaced by a set of de novo adult muscles. The extent to which specialized mesodermal cells homologous to the founders and pioneers of the insect embryo are involved in the development of adult-specific muscles has yet to be established. In the larval thorax, the majority of imaginal myoblasts are associated with the imaginal discs. We report here the identification of a morphologically distinct class of disc-associated myoblasts, which we call imaginal pioneers, that prefigures the formation of at least three adult-specific muscles, the tergal depressor of the trochanter and dorsoventral muscles I and II. Like the muscle pioneers of the grasshopper, the imaginal pioneers attach to the epidermis at sites where the future muscle insertions will arise and erect a scaffold for developing adult muscles. These findings suggest that a prior segregation of imaginal myoblasts into at least two populations, one of which may act as pioneers or founders, must occur during development.  相似文献   

11.
Peter A. Lawrence 《Cell》1982,29(2):493-503
The thorax of the adult Drosophila contains about 80 muscles, which develop from the mesoderm. A new genetic marker was used to map the cell lineage of the myoblasts that form these muscles. Clones of marked cells were produced by irradiation of embryos and larvae, and these were detected in the adult by histochemical staining. The principal findings are that the muscles of each segment have separate origins, and that each becomes compartmented precisely into a dorsal-lineage and a ventral-lineage set of muscles, each set probably being formed by the adepithelial cells found in one imaginal disc. In contrast with the epidermis, the muscles of each thoracic segment are not subdivided into anterior and posterior compartments, and clones of muscle cells that are homozygous for recessivelethal alleles of engralled develop normally.  相似文献   

12.
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle–tendon cell attachment. Although the muscle–tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle–tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.  相似文献   

13.
14.
The epidermis of the anterior end (nose) plays an important role in the evolution, development, and functional feeding morphology in nematodes, but information on this complex organ system is limited. Here, we produce a 3D model of 13 of the cells making up this organ system reconstructed from serial transmission electron micrographs of the microbial feeding nematode, Acrobeles complexus. Nose epidermal cells were found to be broadly similar to those of the distantly related model organism Caenorhabditis elegans in the number and arrangement of nuclei in these largely syncytial cells; this similarity demonstrates striking evolutionary conservation that allows for robust statements of homology between the taxa. Examining details of cell shape, however, revealed surprisingly complex subcellular specialization, which differed markedly from C. elegans in the number and arrangement of cell processes. Anterior toroid processes of the anterior arcade, posterior arcade, and HypB syncytia form a nested complex at the base of the labial probolae. Anterior toroid processes of HypC and the inner labial socket cells are associated with the base of the cephalic probolae and radial ridge processes. Extracellular filaments (tendon organs) and radiating cytoskeletal filaments of the posterior arcade syncytium form a connection between the body wall muscle cells and the pharynx. An epidermal cell with no known homolog in other nematodes is identified. Findings provide a basis to propose hypotheses related to the development and evolutionary origin of specialized feeding appendages (probolae) in the Cephalobinae (including Acrobeles), and hypotheses of homology are revised for epidermal cells in the nose of the closely related and primarily plant parasitic group, Tylenchida.  相似文献   

15.
Locomotion relies on stable attachment of muscle fibres to their target sites, a process that allows for muscle contraction to generate movement. Here, we show that glide/gcm and glide2/gcm2, the fly glial cell determinants, are expressed in a subpopulation of embryonic tendon cells and required for their terminal differentiation. By using loss-of-function approaches, we show that in the absence of both genes, muscle attachment to tendon cells is altered, even though the molecular cascade induced by stripe, the tendon cell determinant, is normal. Moreover, we show that glide/gcm activates a new tendon cell gene independently of stripe. Finally, we show that segment polarity genes control the epidermal expression of glide/gcm and determine, within the segment, whether it induces glial or tendon cell-specific markers. Thus, under the control of positional cues, glide/gcm triggers a new molecular pathway involved in terminal tendon cell differentiation, which allows the establishment of functional muscle attachment sites and locomotion.  相似文献   

16.
The contractile system of the female Intoshia variabili (Orthonectida) consists of smooth muscles. The attachment of the longitudinal muscle fibres at the anterior and the posterior tips of the body is rather peculiar, accomplished by means of elongated terminal muscle cells piercing through several ciliated cells. In the last ciliated cell, the muscle cell invaginates the ciliated cell basal membrane almost up to the ciliated cell surface. Here, around the protrusion terminus, there is an electron‐dense zone in contact with the cilia rootlets.  相似文献   

17.
In the present investigation an analysis has been made of the fine structure of the interrelationships of cells in human forearm epidermis by means of the electron microscope. The "intercellular bridges," here called attachment zones, are more complex than has previously been recognized. It is shown that dense oval thickenings, called attachment plaques, appear in apposed areas of adjacent epidermal cell membranes. The tonofibrils terminate at the internal face of the attachment plaque and do not traverse the 300 A distance between apposed plaques. Seven intervening layers of unidentified substance occupy the space between attachment plaques. The attachment zones appear in all of the classical histological layers of the epidermis. The portions of epidermal cell membrane not involved in intercellular attachments have extensive surface area resulting from plication of the membrane, and its further modification to form microvilli. The possible functional significance of these observations is discussed. Prior observations concerning the basement membrane of epidermis are confirmed. Identification of epidermal melanocytes is achieved, the finer morphology of their dendritic processes is described, and their relationship to epidermal cells is discussed.  相似文献   

18.
The F-spondin family of extracellular matrix proteins has been implicated in axon outgrowth, fasciculation and neuronal cell migration, as well as in the differentiation and proliferation of non-neuronal cells. In screens for mutants defective in C. elegans embryonic morphogenesis, we identified SPON-1, the only C. elegans member of the spondin family. SPON-1 is synthesized in body muscles and localizes to integrin-containing structures on body muscles and to other basement membranes. SPON-1 maintains strong attachments of muscles to epidermis; in the absence of SPON-1, muscles progressively detach from the epidermis, causing defective epidermal elongation. In animals with reduced integrin function, SPON-1 becomes dose dependent, suggesting that SPON-1 and integrins function in concert to promote the attachment of muscles to the basement membrane. Although spon-1 mutants display largely normal neurite outgrowth, spon-1 synergizes with outgrowth defective mutants, revealing a cryptic role for SPON-1 in axon extension. In motoneurons, SPON-1 acts in axon guidance and fasciculation, whereas in interneurons SPON-1 maintains process position. Our results show that a spondin maintains cell-matrix adhesion in multiple tissues.  相似文献   

19.
The formation of a mature myotendinous junction (MTJ) between a muscle and its site of attachment is a highly regulated process that involves myofiber migration, cell-cell signaling, and culminates with the stable adhesion between the adjacent muscle-tendon cells. Improper establishment or maintenance of muscle-tendon attachment sites results in a decrease in force generation during muscle contraction and progressive muscular dystrophies in vertebrate models. Many studies have demonstrated the important role of the integrins and integrin-associated proteins in the formation and maintenance of the MTJ. We recently demonstrated that moleskin (msk), the gene that encodes for Drosophila importin-7 (DIM-7), is required for the proper formation of muscle-tendon adhesion sites in the developing embryo. Further studies demonstrated an enrichment of DIM-7 to the ends of muscles where the muscles attach to their target tendon cells. Genetic analysis supports a model whereby msk is required in the muscle and signals via the secreted epidermal growth factor receptor (Egfr) ligand Vein to regulate tendon cell maturation. These data demonstrate a novel role for the canonical nuclear import protein DIM-7 in establishment of the MTJ.  相似文献   

20.
The precise match between somatic muscles and their epidermal attachment cells is achieved through a continuous dialogue between these two cell types. Whereas tendon cells direct myotube migration and final patterning, the muscles are essential for the maintenance of the fate of tendon cells. The Drosophila neuregulin-like ligand, Vein, and its receptor, the epidermal growth factor receptor (Egfr), are critical components in the inductive signaling process that takes place between muscles and tendon cells. Additional gene products that relay the Vein-Egfr effect in Drosophila are conserved in the vertebrate neuregulin-mediated cascade. This review describes genetic and molecular aspects of the muscle-tendon inductive processes in Drosophila, and compares them with the relevant mechanisms in the vertebrate embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号