首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.  相似文献   

2.
It is known that Escherichia coli K-12 is cryptic (Phn-) for utilization of methyl phosphonate (MePn) and that Phn+ variants can be selected for growth on MePn as the sole P source. Variants arise from deletion via a possible slip strand mechanism of one of three direct 8-bp repeat sequences in phnE, which restores function to a component of a putative ABC type transporter. Here we show that Phn+ variants are present at the surprisingly high frequency of >10(-2) in K-12 strains. Amplified-fragment length polymorphism analysis was used to monitor instability in phnE in various strains growing under different conditions. This revealed that, once selection for growth on MePn is removed, Phn+ revertants reappear and accumulate at high levels through reinsertion of the 8-bp repeat element sequence. It appears that, in K-12, phnE contains a high-frequency reversible gene switch, producing phase variation which either allows ("on" form) or blocks ("off" form) MePn utilization. The switch can also block usage of other metabolizable alkyl phosphonates, including the naturally occurring 2-aminoethylphosphonate. All K-12 strains, obtained from collections, appear in the "off" form even when bearing mutations in mutS, mutD, or dnaQ which are known to enhance slip strand events between repetitive sequences. The ability to inactivate the phnE gene appears to be unique to K-12 strains since the B strain is naturally Phn+ and lacks the inactivating 8-bp insertion in phnE, as do important pathogenic strains for which genome sequences are known and also strains isolated recently from environmental sources.  相似文献   

3.
The phn (psiD) gene cluster is induced during Pi limitation and is required for the use of phosphonates (Pn) as a phosphorus (P) source. Twelve independent Pn-negative (Pn-) mutants have lesions in the phn gene cluster which, as determined on the basis of recombination frequencies, is larger than 10 kbp. This distance formed the basis for determining the complete DNA sequence of a 15.6-kbp BamHI fragment, the sequences of which suggested an operon with 17 open reading frames, denoted (in alphabetical order) the phnA to phnQ genes (C.-M. Chen, Q.-Z. Ye, Z. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem. 265:4461-4471, 1990) Ten Pn- lesions lie in the phnD, phnE, phnH, phnJ, phnK, phnO, and phnP genes. We propose a smaller gene cluster with 14 open reading frames, phnC to phnP, which probably encode transporter and regulatory functions, in addition to proteins needed in Pn biodegradation. On the basis of the effects on phosphite (Pt), Pi ester, and Pi use, we propose that PhnC, PhnD, and PhnE constitute a binding protein-dependent Pn transporter which also transports Pt, Pi esters, and Pi. We propose that PhnO has a regulatory role because a phnO lesion affects no biochemical function, except for those due to polarity. Presumably, the 10 other phn gene products mostly act in an enzyme complex needed for breaking the stable carbon-phosphorus bond. Interestingly, all Pn- mutations abolish the use not only of Pn but also of Pt, in which P is in the +3 oxidation state. Therefore, Pn metabolism and Pt metabolism are related, supporting a biochemical mechanism for carbon-phosphorus bond cleavage which involves redox chemistry at the P center. Furthermore, our discovery of Pi-regulated genes for the assimilation of reduced P suggests that a P redox cycle may be important in biology.  相似文献   

4.
The phoE gene of Escherichia coli codes for an outer membrane pore protein whose expression is induced under phosphate limitation. The promoter of this gene contains a 17 base-pair fragment, designated a pho box, which is present also in other phosphate-controlled promoters. The mRNA start site was determined and found to be located downstream from the pho box, such that this element is located in the -35 region of the phoE promoter. A set of promoter deletions was generated in vitro and analysis of these deletions revealed that sequences upstream from the pho box are required for the efficient expression of phoE. The required upstream region is located (in part) between positions -106 and -121 relative to the mRNA start site, and contains sequences homologous to a pho box and a correctly spaced Pribnow box, but in the reversed orientation relative to the regular -35 and -10 regions. A proper spacing between this upstream region and the -35 region appears to be important, since an oligonucleotide insertion in the intervening region interferes with phoE expression. By cloning the upstream region in a lacZ operon fusion vector, a weak phosphate limitation-inducible promoter activity could be detected.  相似文献   

5.
We describe two insertion elements isolated from Caulobacter crescentus that are designated IS298 and IS511. These insertion elements were cloned from spontaneous flagellar (fla) gene mutants SC298 and SC511 derived from the wild-type strain CB15 (ATCC 19089), in which they were originally identified as insertions in the flbG operon of the hook gene cluster (N. Ohta, E. Swanson, B. Ely, and A. Newton, J. Bacteriol. 158:897-904, 1984). IS298 and IS511 were each present in C. crescentus CB2 and CB15 in at least four different positions, but neither was present in strain CB13 or in several Caulobacter species examined, including C. vibrioides, C. leidyia, and C. henricii. Nucleotide sequence analysis across the chromosome-insertion element junctions showed that IS298 is located 152 base pairs (bp) upstream from the ATG translation start of the hook protein gene flaK, where it is bounded by a 4-bp direct repeat derived from the site of insertion, and that IS511 is inserted at codon 186 of the flaK coding sequence, where it is also bounded by a 4-bp direct repeat duplicated from the site of insertion. The ilvB102 mutation in strain SC125 was also shown to result from insertion sequence IS511, but no duplication of the genomic sequence was present at the insertion element junctions. IS298 contains an imperfect terminal inverted repeat 16 bp long, and IS511 contains a 32-bp inverted repeat at the termini. IS298 and IS511 are the first insertion elements described in C. crescentus.  相似文献   

6.
Escherichia coli strains K12 and B, and a new strain designated D, each encode a characteristic restriction and modification enzyme. These enzymes (EcoK, EcoB and presumably EcoD) comprise three subunits of which one, that encoded by the so-called specificity gene (hsdS), is responsible for recognition of the DNA sequence specific to that system. The other two subunits, encoded by hsdR and hsdM, are interchangeable between systems, and the available molecular evidence suggests that the hsdR and hsdM genes are highly conserved. The DNA sequence of a segment of the hsd region that includes the hsdS gene has been determined for each of the three strains. The hsdS gene varies in length from 1335 to 1425 base-pairs and the only regions showing obvious homology, one of about 100 base-pairs and a second of about 250 base-pairs, are highly conserved. The remainder of each hsd S gene shares little, or no, homology with either of the other related specificity genes. Thus, the specificity subunits, though components of a family of closely related enzymes with very similar functions, have remarkably dissimilar primary structure.  相似文献   

7.
K Schnetz  C Toloczyki    B Rak 《Journal of bacteriology》1987,169(6):2579-2590
Wild-type Escherichia coli cells are unable to grow on beta-glucosides. Spontaneous mutants arise, however, which are able to utilize certain aromatic beta-glucosides such as salicin or arbutin as carbon sources, revealing the presence of a cryptic operon called bgl. Mutations activating the operon map within (or close to) the promoter region of the operon and are due to the transposition of an IS1 or IS5 insertion element into this region. This operon was reported to consist of three genes coding for a phospho-beta-glucosidase, a specific transport protein (enzyme IIBgl), and a positively regulating protein. We have defined the extent and location of three structural genes, bglC, bglS, and bglB, and have determined their DNA sequence. The amino acid sequences deduced from the open reading frames together with deletion and subcloning analyses suggest that the first gene, bglC, codes for the regulatory protein, the second, bglS, codes for the transport protein, and the third, bglB, for phospho-beta-glucosidase. A fourth gene may exist which codes for a product of unknown function. We discuss structural features of the DNA sequence which may bear on the regulation of the operon. Homologies to sequences preceding the gene for an excreted levansucrase of Bacillus subtilis, which are known to be involved in the regulation of this gene, and to sequences preceding the gene for an excreted beta-endoglucanase of B. subtilis, for which data pertaining to regulation are not yet available, suggest a close evolutionary relationship among the regulatory components of all three systems.  相似文献   

8.
Activation of a cryptic gene by excision of a DNA fragment.   总被引:2,自引:1,他引:1       下载免费PDF全文
The cryptic bgl operon in Escherichia coli K-12 strain 1011A contains a 1.4-kilobase-pair fragment of foreign DNA within the bglF structural gene. The active allele found in its descendant strain, MK1, required the precise excision of that insertion for its activation. Molecular and genetic approaches have shown that strain 1011A possessed an active (bglR+) rather than a silent wild-type (bglR0) allele of the regulatory region and that this change was caused by a point mutation. Our model for the retention of cryptic genes (B. G. Hall, S. Yokoyama, and D. H. Calhoun, Mol. Biol. Evol. 1:109-124, 1983) suggested that the insertion might have been selected to silence a disadvantageous bglR+ allele. We examined the genealogy of strain MK1 and found that the insertion of foreign DNA was not selected for that reason, since it preceded the change to bglR+. This means that the change to bglR+ was also not selected, since the presence of the insertion would not allow expression of the operon. We have calculated the probability of isolating a bglR+ mutation by chance alone as less than 10(-8). We suggest that mutation rates estimated under the usual conditions of exponential growth may be irrelevant to the frequencies of these events under natural conditions.  相似文献   

9.
The complete 83 042-bp nucleotide sequence of the IncP-9 naphthalene degradation plasmid pNAH20 from Pseudomonas fluorescens PC20 exhibits striking similarity in size and sequence to another naphthalene (NAH) plasmid pDTG1. However, the positions of insertion sequence (IS) elements significantly alter both catabolic and backbone functions provided by the two plasmids. In pDTG1, insertion of a pCAR1 IS Pre1 -like element disrupts expression of the lower naphthalene operon and this strain utilizes the chromosomal pathway for complete naphthalene degradation. In pNAH20, this operon is intact and functional. The transfer frequency of pNAH20 is 100 times higher than that of pDTG1 probably due to insertion of the pCAR1 IS Pre2 -like element into the mpfR gene coding for a putative repressor of the mpf operon responsible for mating pilus formation. We also demonstrate in situ plasmid transfer – we isolated a rhizosphere transconjugant strain of pNAH20, P. fluorescens NS8. The plasmid pNS8, a derivative of pNAH20, lacks the ability to self-transfer as a result of an additional insertion event of IS Pre2 -like element that disrupts the gene coding for VirB2-like major pilus protein MpfA. The characteristics of the strain PC20 and the conjugal transfer/mobilization capacity of pNAH20 (or its backbone) make this strain/plasmid a potentially successful tool for bioremediation applications.  相似文献   

10.
11.
12.
13.
E Skrzypek  A Piekarowicz 《Plasmid》1989,21(3):195-204
The Escherichia coli plasmid pDXX1 codes for a type I restriction and modification system, EcoDXX1. A 15.5-kb BamHI fragment from pDXX1 has been cloned and contains the hsdR, hsdM, and hsdS genes that encode the EcoDXX1 system. The EcoDXX1 hsd genes can complement the gene products of the EcoR124 and EcoR124/3 hsd systems, but not those of EcoK and EcoB. Hybridization experiments using EcoDXX1 hsd genes as a probe demonstrate homology between EcoDXX1 and EcoR124 and EcoR124/3 restriction-modification systems, but weak or no homology between EcoDXX1 and EcoK or EcoB systems.  相似文献   

14.
15.
Improved oligonucleotide site-directed mutagenesis using M13 vectors.   总被引:105,自引:16,他引:89       下载免费PDF全文
An improved method is described for the construction of mutations in M13 vectors using synthetic oligonucleotides. The DNA is first cloned into a novel M13 vector (based upon M13mp18 or M13mp19), which carries a genetic marker that can be selected against, such as an EcoK or EcoB site, or an amber mutation in an essential phage gene. In this "coupled priming" technique, one primer is used to construct the silent mutation of interest, and a second primer is used to eliminate the selectable marker on the minus strand. After primer extension and ligation, the heteroduplex DNA is transfected into a strain of E. coli which is repair deficient and selects against the plus strand marker. Over 50 mutants have been constructed with this approach, and the yields can be excellent (up to 70%). For the stepwise construction of mutations using separate rounds of mutagenesis, the EcoK and EcoB markers offer a particular advantage over the amber marker. They permit selection in each round, as it is possible to cycle between the two markers. However for construction of multiple mutations over a short region, long synthetic oligonucleotides with multiple mismatches to the template can offer an alternative strategy.  相似文献   

16.
The gene 0.3 protein of bacteriophage T7 is a potent inhibitor of the restriction-modification enzymes EcoB and EcoK, both in vivo and in vitro. We have analyzed the ability of purified 0.3 protein to inhibit different steps in the reactions of EcoB and EcoK with DNA. Most of our experiments were done with EcoK, but selected tests with EcoB indicate that the two enzymes are affected by 0.3 protein in the same way. Purified 0.3 protein binds tightly to free enzyme, apparently to one of the small subunits, and prevents it from binding to DNA. If EcoK is allowed to form specific recognition complexes with unmodified DNA before 0.3 protein is added, relatively low levels of 0.3 protein prevent the nuclease activity that would otherwise appear upon addition of ATP, but considerably higher levels are needed to prevent formation of filter-binding complexes or ATPase activity. This, together with other results, suggests that the binding site for 0.3 protein is protected in recognition complexes and in the early stages of the ATP-stimulated reactions, but that it becomes accessible again before cleavage of the DNA, perhaps after the translocation step. If added after the nuclease reaction is substantially over, 0.3 protein has little effect on ATPase activity, and indeed, the subunit having the binding site for 0.3 protein apparently dissociates from the enzyme-DNA complex. The methylase activity of EcoK on hemi-methylated recognition sites is strongly inhibited by 0.3 protein added at any stage of the reaction.  相似文献   

17.
Escherichia coli K-12 suffers acetic acid stress during prolonged incubation in glucose minimal medium containing a limiting concentration of inorganic phosphate (0.1 mM P(i)), which decreases the number of viable cells from 6 × 10(8) to ≤10 CFU/ml between days 6 and 14 of incubation. Here we show that following two serial transfers into P(i)-limiting medium, evolved mutants survived prolonged incubation (≈10(7) CFU/ml on day 14 of incubation). The evolved strains that overtook the populations were generally PhnE(+), whereas the ancestral K-12 strain carries an inactive phnE allele, which prevents the transport of phosphonates. The switching in phnE occurred with a high frequency as a result of the deletion of an 8-bp repeated sequence. In a mixed culture starved for P(i) that contained the K-12 ancestral strain in majority, evolved strains grew through PhnE-dependent scavenging of probably organic phosphate esters (not phosphonates or P(i)) released by E. coli K-12 between days 1 and 3, before acetic acid excreted by E. coli K-12 reached toxic levels. The growth yield of phnE(+) strains in mixed culture was dramatically enhanced by mutations that affect glucose metabolism, such as an rpoS mutation inactivating the alternative sigma factor RpoS. The long-term viability of evolved populations was generally higher when the ancestral strain carried an inactive rather than an active phnE allele, which indicates that cross-feeding of phosphorylated products as a result of the phnE polymorphism may be essential for the spread of mutants which eventually help populations to survive under P(i) starvation conditions.  相似文献   

18.
Y Cai 《Journal of bacteriology》1991,173(18):5771-5777
IS892, one of the several insertion sequence (IS) elements discovered in Anabaena sp. strain PCC 7120 (Y. Cai and C. P. Wolk, J. Bacteriol. 172:3138-3145, 1990), is 1,675 bp with 24-bp near-perfect inverted terminal repeats and has two open reading frames (ORFs) that could code for proteins of 233 and 137 amino acids. Upon insertion into target sites, this IS generates an 8-bp directly repeated target duplication. A 32-bp sequence in the region between ORF1 and ORF2 is similar to the sequence of the inverted termini. Similar inverted repeats are found within each of those three segments, and the sequences of these repeats bear some similarity to the 11-bp direct repeats flanking the 11-kb insertion interrupting the nifD gene of this strain (J. W. Golden, S. J. Robinson, and R. Haselkorn, Nature [London] 314:419-423, 1985). A sequence similar to that of a binding site for the Escherichia coli integration host factor is found about 120 bp from the left end of IS892. Partial nucleotide sequences of active IS elements IS892N and IS892T, members of the IS892 family from the same Anabaena strain, were shown to be very similar to the sequence of IS892.  相似文献   

19.
20.
The sequence of a 2,437-bp DNA segment from the naphthalene upper catabolic pathway operon of plasmid NAH7 was determined. This segment contains three large open reading frames designated nahQ', nahE, and nahD. The first of these is the 3' end of an open reading frame that has no known function, the second (993 bp) encodes trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (deduced molecular weight, 36,640), and the third (609 bp) encodes 2-hydroxychromene-2-carboxylate isomerase (deduced molecular weight, 23,031). This DNA has a high degree of sequence homology (greater than 91% for the first 2161 bp) with a DNA segment from the dox (dibenzothiophene oxidation) operon of Pseudomonas sp. strain C18, which encodes a pathway analogous to that encoded by NAH7. However, 84 bp downstream from nahD, the last gene in the nah operon, this homology ends. This 84-bp sequence at the downstream end of nah and dox homology has 76% homology to a sequence that occurs just upstream of the nah promoter in NAH7. These directly repeated 84-bp sequences thus encompass the upper-pathway nah operon and constitute the ends of a highly conserved region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号