首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Women are twice as likely as men to suffer from stress-related psychiatric disorders, like unipolar depression and post-traumatic stress disorder. Although the underlying neural mechanisms are not well characterized, the pivotal role of stress in the onset and severity of these diseases has led to the idea that sex differences in stress responses account for this sex bias. Corticotropin-releasing factor (CRF) orchestrates stress responses by acting both as a neurohormone to initiate the hypothalamic-pituitary-adrenal (HPA) axis and as a neuromodulator in the brain. One target of CRF modulation is the locus coeruleus (LC)-norepinephrine system, which coordinates arousal components of the stress response. Hypersecretion of CRF and dysregulation of targets downstream from CRF, such as the HPA axis and LC-norepinephrine system, are characteristic features of many stress-related psychiatric diseases, suggesting a causal role for CRF and its targets in the development of these disorders. This review will describe sex differences in CRF and the LC-norepinephrine system that can increase stress sensitivity in females, making them vulnerable to stress-related disorders. Evidence for gonadal hormone regulation of hypothalamic CRF is discussed as an effect that can lead to increased HPA axis activity in females. Sex differences in the structure of LC neurons that create the potential for hyperarousal in response to emotional stimuli are described. Finally, sex differences at the molecular level of the CRF(1) receptor that make the LC-norepinephrine system more reactive in females are reviewed. The implications of these sex differences for the treatment of stress-related psychiatric disorders also will be discussed.  相似文献   

2.
Low levels of monoamine oxidase-B (MAO-B) activity, such as those observed in smokers, are also associated with behavioral traits such as a heightened responsiveness to novelty. However, the exact mechanism by which low MAO-B activity influences smoking and heightened responsiveness to novelty is still poorly understood. We used MAO-B knockout (KO) mice to test the hypothesis that MAO-B concomitantly affects locomotor responses in a novel inescapable open field and nicotine intake. Male wild-type (WT) and MAO-B KO mice were placed in an inescapable open field and their horizontal locomotor activity was measured for 30 min per day for 5 days. MAO-B KO mice exhibited impaired within-session habituation of locomotor activity, as compared to WT mice. Separate groups of male WT and MAO-B KO mice were individually housed in their home cages with two water bottles. One of the bottles contained tap water and the other contained nicotine (0, 3.125, 6.25, 12.5, 25, 50 or 100 micro g/ml). The total amount of water and nicotine solution consumed was measured every three days for 16 days. MAO-B KO mice and WT mice consumed equal amounts of nicotine and exhibited comparable concentration-dependent nicotine preference and aversion over a period of 16 days. The data suggest that the absence of MAO-B impairs the ability of mice to habituate in the inescapable environment, but does not alter their nicotine intake.  相似文献   

3.
Stress-related psychiatric disorders, such as unipolar depression and post-traumatic stress disorder (PTSD), occur more frequently in women than in men. Emerging research suggests that sex differences in receptors for the stress hormones, corticotropin releasing factor (CRF) and glucocorticoids, contribute to this disparity. For example, sex differences in CRF receptor binding in the amygdala of rats may predispose females to greater anxiety following stressful events. Additionally, sex differences in CRF receptor signaling and trafficking in the locus coeruleus arousal center combine to make females more sensitive to low levels of CRF, and less adaptable to high levels. These receptor differences in females could lead to hyperarousal, a dysregulated state associated with symptoms of depression and PTSD. Similar to the sex differences observed in CRF receptors, sex differences in glucocorticoid receptor (GR) function also appear to make females more susceptible to dysregulation after a stressful event. Following hypothalamic pituitary adrenal axis activation, GRs are critical to the negative feedback process that inhibits additional glucocorticoid release. Compared to males, female rats have fewer GRs and impaired GR translocation following chronic adolescent stress, effects linked to slower glucocorticoid negative feedback. Thus, under conditions of chronic stress, attenuated negative feedback in females would result in hypercortisolemia, an endocrine state thought to cause depression. Together, these studies suggest that sex differences in stress-related receptors shift females more easily into a dysregulated state of stress reactivity, linked to the development of mood and anxiety disorders. The implications of these receptor sex differences for the development of novel pharmacotherapies are also discussed.  相似文献   

4.
Acute stress affects gut functions through the activation of corticotropin-releasing factor (CRF) receptors. The impact of acute stress on pelvic viscera in the context of chronic stress is not well characterized. We investigated the colonic, urinary, and locomotor responses monitored as fecal pellet output (FPO), urine voiding, and ambulatory activity, respectively, in female and male CRF-overexpressing (CRF-OE) mice, a chronic stress model, and their wild-type littermates (WTL). Female CRF-OE mice, compared with WTL, had enhanced FPO to 2-min handling (150%) and 60-min novel environment (155%) but displayed a similar response to a 60-min partial restraint stress. Female CRF-OE mice, compared with WTL, also had a significantly increased number of urine spots (7.3 +/- 1.4 vs. 1.3 +/- 0.8 spots/h) and lower locomotor activity (246.8 +/- 47.8 vs. 388.2 +/- 31.9 entries/h) to a novel environment. Male CRF-OE mice and WTL both responded to a novel environment but failed to show differences between them in colonic and locomotor responses. Male WTL, compared with female WTL, had higher FPO (113%). In female CRF-OE mice, the CRF(1)/CRF(2) receptor antagonist astressin B and the selective CRF(2) receptor agonist mouse urocortin 2 (injected peripherally) prevented the enhanced defecation without affecting urine or locomotor responses to novel environment. RT-PCR showed that CRF(1) and CRF(2) receptors are expressed in the mouse colonic tissues. The data show that chronic stress, due to continuous central CRF overdrive, renders female CRF-OE mice to have enhanced pelvic and altered behavioral responses to superimposed mild stressors and that CRF(1)-initiated colonic response is counteracted by selective activation of CRF(2) receptor.  相似文献   

5.
The beta-adrenergic pathway has been considered one important effector of circadian variation in arterial pressure. Experiments were performed in beta1/beta2-adrenergic receptor-deficient mice (beta1/beta2ADR-/-) to assess whether this pathway is required for circadian variation in mean arterial pressure (MAP) and to determine the impact of its loss on the response to changes in dietary salt. Twenty-four-hour recordings of MAP, heart rate (HR), and locomotor activity were made in conscious 16- to 17-wk-old mice [wild-type, (WT), n = 7; beta1/beta2ADR-/-, n = 10] by telemetry. Both WT and beta1/beta2ADR-/- mice demonstrated robust circadian variation in MAP and HR, although 24-h mean MAP was 10% lower (102.02 +/- 1.81 vs. 92.11 +/- 2.62 mmHg) in beta1/beta2ADR-/- than WT, HR was 16% lower and day-night differences reduced. Both WT and beta1/beta2ADR-/- mice adapted to changed salt intake without changed MAP. However, the beta1/beta2ADR-/- mice demonstrated a striking reduction in locomotor activity in light and dark phases of the day. In WT mice, MAP was markedly affected by locomotor activity, resulting in bimodal distributions in both light and dark. When MAP was analyzed using only intervals without locomotor activity, bimodality and circadian differences were reduced, and there was no significant difference between the two genotypes. The results indicate that there is no direct effect or role for the beta-adrenergic system in circadian variation of arterial pressure in mice, aside from the indirect consequences of altered locomotor activity. Our results also confirm that locomotor activity contributes strongly to circadian variation in blood pressure in mice.  相似文献   

6.
Two cognate receptors (CRF(1) and CRF(2)) mediate the actions of the stress-regulatory corticotropin-releasing factor (CRF) family of peptides. Defining the respective roles of these receptors in the central nervous system is critical in understanding stress neural circuitry and the development of psychiatric disorders. Here, we examined the role of CRF(2) in several paradigms that assess coping responses to stress. We report that CRF(2) knockout mice responded to a novel setting with increased aggressive behavior toward a bulbectomized conspecific male and show increased immobility during acute swim stress compared with wild-type mice. In addition, CRF(2)-deficient mice exhibited impaired adaptation to isolation stress as evinced by prolonged hypophagia and associated weight loss. Collectively, these results point toward a role for CRF(2) pathways in neural circuits that subserve stress-coping behaviors.  相似文献   

7.
The anxiety- and stress-related neuropeptide corticotropin-releasing factor (CRF) elicits behavioral changes in vertebrates including increases in behavioral arousal and locomotor activity. Intracerebroventricular injections of CRF in an amphibian, the roughskin newt (Taricha granulosa), induces rapid increases in locomotor activity in both intact and hypophysectomized animals. We hypothesized that this CRF-induced increase in locomotor activity involves a central effect of CRF on serotonergic neurons, based on known stimulatory actions of serotonin (5-hydroxytryptamine, 5-HT) on spinal motor neurons and the central pattern generator for locomotor activity in vertebrates. In Experiment 1, we found that neither intracerebroventricular injections of low doses of CRF (25 ng) nor the selective serotonin reuptake inhibitor fluoxetine (10, 100 ng), by themselves, altered locomotor activity. In contrast, newts treated concurrently with CRF and fluoxetine responded with marked increases in locomotor activity. In Experiment 2, we found that increases in locomotor activity following co-administration of CRF (25 ng) and fluoxetine (100 ng) were associated with decreased 5-HT concentrations in a number of forebrain structures involved in regulation of emotional behavior and emotional states, including the ventral striatum, amygdala pars lateralis, and dorsal hypothalamus, measured 37 min after treatment. These results are consistent with the hypothesis that CRF stimulates locomotor activity through activation of serotonergic systems.  相似文献   

8.
Corticotropin-releasing hormone (CRH) overproduction and serotonergic dysfunction have both been implicated in a range of psychiatric disorders, such as anxiety and depression, and several studies have shown interactions between these two neurotransmitter systems. In this study, we investigated the effects of CRH challenge on hypothalamo-pituitary-adrenal (HPA) axis activity in female transgenic mice overproducing CRH. Furthermore, the effects of mild stress on HPA axis activity and body temperature were investigated in these mice. Pre- and post-synaptic 5-HT1A receptor function were studied by monitoring body temperature and plasma corticosterone levels after challenge with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propyl-amino)-tetralin (8-OH-DPAT). Hypothermia in response to 8-OH-DPAT treatment did not differ between transgenic and wild type mice, indicating unaltered somatodendritic 5-HT1A autoreceptor function in mice overproducing CRH. In wild type mice 8-OH-DPAT increased plasma corticosterone levels, but not in transgenic animals. CRH injection, however, increased corticosterone levels in both groups. These data suggest desensitization of post-synaptic, but not pre-synaptic, 5-HT1A receptors in mice overproducing CRH. These findings resemble those seen in depressed patients following 5-HT1A challenge, which is in accord with the hypothesized role of CRH in the pathogenesis of depression.  相似文献   

9.
Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE(2) was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders.  相似文献   

10.
Pharmacological and genetic studies have suggested that the metabotropic glutamate receptor 5 (mGluR5) is critically involved in mediating the reinforcing effects of drugs of abuse, but not food. The purpose of this study was to use mGluR5 knockout (KO), heterozygous (Het), and wildtype (WT) mice to determine if mGluR5 modulates operant sensation seeking (OSS), an operant task that uses varied sensory stimuli as a reinforcer. We found that mGluR5 KO mice had significantly reduced OSS responding relative to WT mice, while Het mice displayed a paradoxical increase in OSS responding. Neither KO nor Het mice exhibited altered operant responding for food as a reinforcer. Further, we assessed mGluR5 KO, Het and WT mice across a battery of cocaine locomotor, place preference and anxiety related tests. Although KO mice showed expected differences in some locomotor and anxiety measures, Het mice either exhibited no phenotype or an intermediate one. In total, these data demonstrate a key role for mGluR5 in OSS, indicating an important role for this receptor in reinforcement-based behavior.  相似文献   

11.
Among rodents, females are generally considered to be highly responsive in terms of emotionality under stressful conditions, and have higher corticosterone levels and activity. In this study, we examined sex differences in mice by evaluating anxiety behaviors and corticosterone responses to mild stressors. In our first experiment, we analyzed the behavioral and corticosterone responses to the elevated plus-maze test and open-field test in male and female mice, and compared sex differences. Principal component analysis (PCA) was used to investigate the correlation of these responses between males and females. The corticosterone level was higher in females under both basal and stressed conditions. In the behavioral response, higher locomotor activity was seen in females in the elevated plus-maze test. PCA showed little association among anxiety behavior, locomotor activity, and corticosterone secretion. In our second experiment, we examined the activational effects of sex steroids on the corticosterone response to the elevated plus-maze test by gonadectomizing male and female mice and using testosterone or estrogen capsules as hormonal replacements. Sex differences at the basal corticosterone level were not altered by the hormonal milieu in adults, however the higher corticosterone level of females in response to stress was diminished by ovariectomy, although replacement with neither testosterone nor estrogen had any effect. These results suggest that the sex difference in novelty exposure observed in the form of a greater hypothalamic-pituitary-adrenal (HPA) axis response in female ICR mice is controlled by ovary-derived factors in adults.  相似文献   

12.
The scale-invariant and intermittent dynamics of animal behavior are attracting scientific interest. Recent findings concerning the statistical laws of behavioral organization shared between healthy humans and wild-type mice (WT) and their alterations in human depression patients and circadian clock gene (Period 2; Per2) mutant mice indicate that clock genes play functional roles in intermittent, ultradian locomotor dynamics. They also claim the clinical and biological importance of the laws as objective biobehavioral measures or endophenotypes for psychiatric disorders. In this study, to elucidate the roles of breakdown of the broader circadian regulatory circuit in intermittent behavioral dynamics, we studied the statistical properties and rhythmicity of locomotor activity in Per2 mutants and mice deficient in other clock genes (Bmal1, Clock). We performed wavelet analysis to examine circadian and ultradian rhythms and estimated the cumulative distributions of resting period durations during which locomotor activity levels are continuously lower than a predefined threshold value. The wavelet analysis revealed significant amplification of ultradian rhythms in the BMAL1-deficient mice, and instability in the Per2 mutants. The resting period distributions followed a power-law form in all mice. While the distributions for the BMAL1-deficient and Clock mutant mice were almost identical to those for the WT mice, with no significant differences in their parameter (power-law scaling exponent), only the Per2 mutant mice showed consistently and significantly lower values of the scaling exponent, indicating the increased intermittency in ultradian locomotor dynamics. Furthermore, based on a stochastic priority queuing model, we explained the power-law nature of resting period distributions, as well as its alterations shared with human depressive patients and Per2 mutant mice. Our findings lead to the development of a novel mathematical model for abnormal behaviors in psychiatric disorders.  相似文献   

13.
Intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF; 25 ng) given to male rough-skinned newts (Taricha granulosa) stimulated locomotor activity tested in a circular arena starting 35 min after the injection. The CRF receptor antagonist, alpha-helical CRF9-41 (ahCRF; 250 or 500 ng), injected icv concurrently with CRF blocked CRF-induced locomotor activity. In contrast, icv injection of ahCRF had no effect on spontaneous locomotor activity. Other studies examined the effect of ahCRF on the elevated locomotor activity that was observed when the animals were stressed (handled or placed in warm water). The CRF antagonist dose dependently attenuated the response to either handling or warm stress tested 2 hr after drug treatment. We also examined the effect of the alpha 2-adrenergic agonist, clonidine, on spontaneous and CRF-induced locomotor activity. Clonidine injected icv dose dependently suppressed spontaneous locomotor activity but not CRF-induced locomotor activity. These studies support the hypothesis that endogenous CRF is involved in mediating stress-induced locomotor activity and indicate that the effects of CRF on locomotor activity are independent of activation of the alpha 2-adrenergic system.  相似文献   

14.
Carnitine-deficient juvenile visceral steatosis (JVS) mice, suffering from fatty acid metabolism abnormalities, have reduced locomotor activity after fasting. We examined whether JVS mice exhibit specific defect in the feeding response to fasting, a key process of anti-famine homeostatic mechanism. Carnitine-deficient JVS mice showed grossly defective feeding response to 24 h-fasting, with almost no food intake in the first 4 h, in marked contrast to control animals. JVS mice also showed defective acyl-ghrelin response to fasting, less suppressed leptin, and seemingly normal corticotropin-releasing factor (CRF) expression in the hypothalamus despite markedly increased plasma corticosterone. The anorectic response was ameliorated by intraperitoneal administration of carnitine or acyl-ghrelin, with decreased CRF expression. Intracerebroventricular treatment of CRF type 2 receptor antagonist, anti-sauvagine-30, recovered the defective feeding response of 24 h-fasted JVS mice. The defective feeding response to fasting in carnitine-deficient JVS mice is due to the defective acyl-ghrelin and enhanced CRF signaling in the hypothalamus through fatty acid metabolism abnormalities. In this animal model, carnitine normalizes the feeding response through an inhibition of CRF.  相似文献   

15.
We investigated behavioural activity and temporal distribution (patterning) of mouse exploration in different open field (OF) arenas. Mice of 129S1 (S1) strain were subjected in parallel to three different OF arenas (Experiment 1), two different OF arenas in two trials (Experiment 2) or two trials of the same OF test (Experiment 3). Overall, mice demonstrated a high degree of similarity in the temporal profile of novelty-induced horizontal and vertical exploration (regardless of the size, colour and shape of the OF), which remained stable in subsequent OF exposures. In Experiments 4 and 5, we tested F1 hybrid mice (BALB/c-S1; NMRI-S1), and Vitamin D receptor knockout mice (generated on S1 genetic background), again showing strikingly similar temporal patterns of their OF exploration, despite marked behavioural strain differences in anxiety and activity. These results suggest that mice are characterised by stability of temporal organization of their exploration in different OF novelty situations.  相似文献   

16.
Throughout their lives, animals adapt their behaviour to environmental fluctuations and to their own requirements. In social insects, behavioural changes are often particularly conspicuous. For example, in many ant species, reproductive sexuals leave their maternal nests and engage in risky mating and dispersal activities. Female sexuals experience, during a short period of time, dramatic changes in terms of behaviour and environmental conditions. But because sexual activities of ants are not easily observed, few studies have quantified in detail how behaviour alters with maturation and mating. We studied how various behavioural traits of Leptothorax gredleri female sexuals, a species in which female sexuals attract males by ‘female calling’, change before and after mating. We tested the hypothesis that behavioural variation reflects the altered requirements of queens to adapt to a particular situation. To this end, we compared geotactic, phototactic and locomotor behaviour across a wide range of life stages from lightly coloured, unmated female sexuals to old, mated queens. The results showed that female sexuals of L. gredleri change conspicuously their geotactic, phototactic and locomotor behavioural traits over their life stages. Three different behavioural states were evident (1) from light to dark female sexuals, individuals have negative phototaxis and reduced locomotor activity; (2) mature female sexuals during the daily period of sexual activity have strong phototaxis, negative geotaxis and an important locomotor activity; and (3) freshly mated and old mated queens avoid light and decrease their locomotor activity. These sharp differences in behaviour between stages match the transition from the relative safety of the nest chamber to the adversary world outside the nest , and back.  相似文献   

17.
The behavioural phenotype of transgenic mice (3- to 5-months old) overexpressing galanin (GalOE) under the platelet-derived growth factor B (PDGF-B) promoter was evaluated in a battery of tests, including open field, locomotor cages, light-dark exploration test, elevated plus-maze and the Porsolt forced swim test. Learning and memory were assessed in the passive avoidance and the Morris water maze tasks. No difference between genotypes was found in exploratory activity in the open field. GalOE mice showed a slight increase in spontaneous locomotor activity assessed in the locomotor cages, but the amphetamine-induced increase in locomotor activity was somewhat lower in GalOE mice. Anxiety-like behaviour in the three different tests including open field, light-dark exploration and elevated plus-maze did not differ between genotypes. In the Porsolt forced swim test, GalOE mice displayed an increased time of immobility, indicative of increased learned helplessness possibly reflecting increased stress-susceptibility and/or depression-like behaviour. GalOE mice showed normal learning and memory retention in the passive avoidance and the Morris water maze tasks. These data support the hypothesis that galanin may have a role in functions related to mood states including affective disorders.  相似文献   

18.
In a previous publication we observed aberrant levels of the human reduced folate carrier (hRFC) in cortex from fetal Down syndrome (DS) subjects. Immunoreactivity for hRFC was increased as the only chromosome 21 gene product studied. We, therefore, analyzed mice transgenic for hRFC (TghRFC1) and wild-type (WT) mice for cognitive functions, behavior and in an observational neurological battery (FOB). Cognitive functions were evaluated by the Morris water maze (MWM), the open field (OF) was used for exploratory behavior, locomotor activity and anxiety-related behavior. The elevated plus maze (EPM) was used to confirm findings in the OF testing anxiety-related behavior and the rota rod (RR) to evaluate motor function. In the MWM TghRFC1 mice performed significantly worse (P < 0.0003) on the probe trial than WT mice. In the FOB visual placing was significantly reduced inTghRFC1 mice. In the OF TghRFC1 mice crossed twice as often (P < 0.029) and in the EPM individuals from this group showed a reduced number of exits from the closed arm (P < 0.044) compared to WT mice. TghRFC1 mice showed impaired performance on the RR, spending one-fourth of the time of WT on the revolving rod (P < 0.0003). Cognitive impairment is an obligatory symptom of DS and this deficiency corresponds to findings in the MWM of mice transgenic for hRFC. Findings of visual placing and failure on the RR may reflect impaired motor performance including muscular hypotonia in DS subjects. Increased crossings in the OF may indicate modulated anxiety-related behavior observed in patients with DS.  相似文献   

19.
PGD(2) is a major lipid mediator released from mast cells, but little is known about its role in the development of allergic reactions. We used transgenic (TG) mice overexpressing human lipocalin-type PGD synthase to examine the effect of overproduction of PGD(2) in an OVA-induced murine asthma model. The sensitization of wild-type (WT) and TG mice was similar as judged by the content of OVA-specific IgE. After OVA challenge, PGD(2), but not PGE(2), substantially increased in the lungs of WT and TG mice with greater PGD(2) increment in TG mice compared with WT mice. The numbers of eosinophils and lymphocytes in the bronchoalveolar lavage (BAL) fluid were significantly greater in TG mice than in WT mice on days 1 and 3 post-OVA challenge, whereas the numbers of macrophages and neutrophils were the same in both WT and TG mice. The levels of IL-4, IL-5, and eotaxin in BAL fluid were also significantly higher in TG mice than in WT mice, although the level of IFN-gamma in the BAL fluid of TG mice was decreased compared with that in WT mice. Furthermore, lymphocytes isolated from the lungs of TG mice secreted less IFN-gamma than those from WT mice, whereas IL-4 production was unchanged between WT and TG mice. Thus, overproduction of PGD(2) caused an increase in the levels of Th2 cytokines and a chemokine, accompanied by the enhanced accumulation of eosinophils and lymphocytes in the lung. These results indicate that PGD(2) plays an important role in late phase allergic reactions in the pathophysiology of bronchial asthma.  相似文献   

20.
APPswe+PS1/ΔE9 transgenic (Tg) mice with Aβ plaque formation in neocortex and hippocampus were evaluated in tests measuring exploratory activity, anxiety, and memory ability using open field test (OFT), Y-maze, contextual fear conditioning (CFC), and Morris water maze (MWM). Wild type (WT) and Tg mice over eight months old showed same locomotion activity and anxiety level in novel stimulation, open field, and Y-maze contexts. In other experiments that measured associative memory and spatial memory in Tg mice and their littermates, the subjects also presented similar deficiencies in memory acquisition. These two aged groups showed abnormal freezing level variance especially in CFC test. In comparison to that in non-transgenic 8-week-old mice group, the acquisition of spatial memory in MWM task was impaired in aged WT and bigenic Tg mice. Taken together, aged wild-type littermates and Tg mice present similar deficits in associative learning and spatial memory independent of amyloid plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号