首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
E Honoré  M Lazdunski 《FEBS letters》1991,287(1-2):75-79
K+ channel openers elicit K+ currents in follicle-enclosed Xenopus oocytes. The most potent activators are the pinacidil derivatives P1075 and P1060. The rank order of potency to activate K+ currents in follicle-enclosed oocytes was: P1075 (K0.5:5 microM) greater than P1060 (K0.5:12 microM) greater than BRL38227 (lemakalim) (K0.5:77 microM) greater than RP61410 (K0.5:100 microM) greater than (-)pinacidil (K0.5:300 microM). Minoxidil sulfate, nicorandil, RP49356 and diazoxide were ineffective. Activation by the K+ channel openers could be abolished by the antidiabetic sulfonylurea glibenclamide. It was not affected by the blocker of the Ca(2+)-activated K+ channels charybdotoxin. The various K+ channel openers failed to activate glibenclamide-sensitive K+ channels in defolliculated oocytes, but BRL derivatives (K0.5 for BRL38226 is 150 microM) and RP61419 inhibited a background current. The channel responsible for this background current is K+ permeable but not fully selective for K+. It is resistant to glibenclamide. It is inhibited by Ba2+, 4-aminopyridine, Co2+, Ni2+ and La3+.  相似文献   

2.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel that is regulated by protein kinase A and cytosolic nucleotides. Previously, Sheppard and Welsh reported that the sulfonylureas glibenclamide and tolbutamide reduced CFTR whole cell currents. The aim of this study was to quantify the effects of tolbutamide on CFTR gating in excised membrane patches containing multiple channels. We chose tolbutamide because weak (i.e., fast-type) open channel blockers introduce brief events into multichannel recordings that can be readily quantified by current fluctuation analysis. Inspection of current records revealed that the addition of tolbutamide reduced the apparent single-channel current amplitude and increased the open-channel noise, as expected for a fast-type open channel blocker. The apparent decrease in unitary current amplitude provides a measure of open probability within a burst (P0 Burst), and the resulting concentration-response relationship was described by a simple Michaelis-Menten inhibition function. The concentration of tolbutamide causing a 50% reduction of Po Burst (540 +/- 20 microM) was similar to the concentration producing a 50% inhibition of short-circuit current across T84 colonic epithelial cell monolayers (400 +/- 20 microM). Changes in CFTR gating were then quantified by analyzing current fluctuations. Tolbutamide caused a high-frequency Lorentzian (corner frequency, fc > 300 Hz) to appear in the power density spectrum. The fc of this Lorentzian component increased as a linear function of tolbutamide concentration, as expected for a pseudo-first-order open-blocked mechanism and yielded estimates of the on rate (koff = 2.8 +/- 0.3 microM-1 s-1), the off rate (kon = 1210 +/- 225 s-1), and the dissociation constant (KD = 430 +/- 80 microM). Based on these observations, we propose that there is a bimolecular interaction between tolbutamide and CFTR, causing open channel blockade.  相似文献   

3.
The K+ channel openers, including cromakalim, pinacidil, minoxidil sulfate, diazoxide, and nicorandil, form a chemically heterogeneous group of compounds, which relax smooth muscle by opening plasmalemmal K+ channels. At present it is not known whether these drugs elicit their effects by binding to the same target, presumably the K+ channel. In order to address this question, a binding assay for K+ channel openers has been developed in vascular smooth muscle. The novel tritiated K+ channel opener, [3H]P1075, an analogue of pinacidil, binds with high affinity (KD = 6 +/- 1 nM) to endothelium-denuded rings of rat aorta. Inhibition studies indicate that the different families of K+ channel openers bind to a common target. Evidence is presented to suggest that the binding site for the sulfonylurea, glibenclamide, the major blocker of the K+ channel openers, is coupled in a negative allosteric manner to the binding site(s) for the openers. The binding assay described here may open the way to the biochemical characterization of the drug receptor for the K+ channel openers.  相似文献   

4.
In animal cells, ATP binding cassette (ABC) proteins are a large family of transporters that includes the sulfonylurea receptor and the cystic fibrosis transmembrane conductance regulator (CFTR). These two ABC proteins possess an ion channel activity and bind specific sulfonylureas, such as glibenclamide, but homologs have not been identified in plant cells. We recently have shown that there is an ABC protein in guard cells that is involved in the control of stomatal movements and guard cell outward K+ current. Because the CFTR, a chloride channel, is sensitive to glibenclamide and able to interact with K+ channels, we investigated its presence in guard cells. Potent CFTR inhibitors, such as glibenclamide and diphenylamine-2-carboxylic acid, triggered stomatal opening in darkness. The guard cell protoplast slow anion current that was recorded using the whole-cell patch-clamp technique was inhibited rapidly by glibenclamide in a dose-dependent manner; the concentration producing half-maximum inhibition was at 3 &mgr;M. Potassium channel openers, which bind to and act through the sulfonylurea receptor in animal cells, completely suppressed the stomatal opening induced by glibenclamide and recovered the glibenclamide-inhibited slow anion current. Abscisic acid is known to regulate slow anion channels and in our study was able to relieve glibenclamide inhibition of slow anion current. Moreover, in epidermal strip bioassays, the stomatal closure triggered by Ca2+ or abscisic acid was reversed by glibenclamide. These results suggest that the slow anion channel is an ABC protein or is tightly controlled by such a protein that interacts with the abscisic acid signal transduction pathway in guard cells.  相似文献   

5.
Several new chemical entities (RP 52891, cromakalim and its derivatives) are potent and specific openers of vascular K+ channels. This mechanism is also shared, at least partially, by drugs such as minoxidil, diazoxide, pinacidil and nicorandil. The opening of plasmalemma K+ channels produces loss of cytosolic K+. This effect results in cellular hyperpolarization and functional vasorelaxation. In normotensive or hypertensive rats, K+ channel activators decrease aortic blood pressure (by producing a directly mediated fall in systemic vascular resistance) and reflexly increase heart rate. The former effect is not modified by specific blockers of classical vascular receptors but it is completely antagonized by the hypoglycemic sulphonylurea, glibenclamide, an established blocker of ATP-regulated K+ channels. K+ channel openers produce selective coronary vasodilatation and afford functional and biochemical protection to the ischemic myocardium. This salutary effect is mediated via cardiac K+ channel modulation and may result from an improved myocardial oxygen balance in the ischemic region. K+ channel openers increase plasma renin activity in animals as well as in man. However, only diazoxide, but not cromakalim or RP 52891, lowers plasma insulin concentration. The dose of glibenclamide entirely blocking the latter effect is over 50-fold smaller than that antagonizing the hypotensive and hyper-reninemic responses to diazoxide. In conclusion, K+ channel activators are potent vasorelaxant and cardioprotective agents possessing an original mechanism of action which is the opening of plasmalemma ATP-regulated K+ channels. Their clinical use as antihypertensive agents may be accompanied by undesirable effects (characteristic of peripheral vasodilators) which are likely to be attenuated or avoided by controlled release formulations. However, inasmuch as low doses of K+ channel openers may be sufficient to produce selective coronary artery dilatation and cardioprotection, these compounds could be of particular value in treating patients with coronary artery disease efficaciously and possibly without adverse cardiovascular effects.  相似文献   

6.
Using the scrape-loading technique in cultured astrocytes, we show that sulfonylureas such as tolbutamide and glybenzcyclamide, which inhibit the ATP-sensitive K+ channel, prevent the inhibition of gap junction permeability caused by several structurally unrelated uncouplers such as oleic acid, arachidonic acid, endothelin-1, octanol, and alpha-glycyrrhetinic acid. When the intracellular level of Ca2+ was diminished, all the uncouplers tested were still able to inhibit gap junction communication, indicating that their inhibitory effect was not mediated by Ca2+. In addition, tolbutamide and glybenzcyclamide prevented the inhibitory effect of these uncouplers in Ca(2+)-depleted astrocytes, suggesting that the inhibition of the ATP-sensitive K+ channel increases gap junction permeability through a Ca(2+)-independent mechanism. The activation of the ATP-sensitive K+ channel caused by potassium channel openers such as diazoxide and pinacidil led to the inhibition of gap junction communication and overcame the effect of sulfonylureas. These results suggest that the ATP-sensitive K+ channel regulates gap junctional permeability.  相似文献   

7.
The effects of the hypoglycemic sulfonylureas tolbutamide and glibenclamide on free cytoplasmic Ca2+, [Ca2+]i, were compared with that of a depolarizing concentration of K+ in dispersed and cultured pancreatic beta-cells from ob/ob mice. [Ca2+]i was measured with the fluorescent Ca2+-indicator quin2. The basal level corresponded to 150 nM and increased to 600 nM after exposure to 30.9 mM K+. The corresponding levels after stimulation with 1 microM glibenclamide and 100 microM tolbutamide were 390 and 270 nM respectively. K+ depolarization increased [Ca2+]i more rapidly than either of the sulfonylureas. It is suggested that the increased [Ca2+]i obtained after stimulation by sulfonylureas is due to depolarization of the beta-cells with subsequent entry of Ca2+ through voltage-dependent channels.  相似文献   

8.
The sensitivity of K(ATP) channels to high-affinity block by sulfonylureas and to stimulation by K(+) channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) profoundly antagonized ATP inhibition of K(ATP) channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP(2) drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K(ATP) channels (Kir6. 2[DeltaN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6. 2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP(2) also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP(2) application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP(2). The net effect of increasing open state stability, either by PIP(2) or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine.  相似文献   

9.
Recent in vivo and in vitro experiments suggested that the smooth muscle relaxation mediated by diverse pharmacologic agents resulted from K+ channel opening. Pinacidil, cromakalim, nicorandil, RP 49356, minoxidil sulfate and diazoxide belong to this new group of smooth muscle relaxants: the "K+ channel openers". Because modifications in the K+ permeability are known to represent a critical event in the insulin-releasing process, numerous studies have been performed in order to examine the putative effects of K+ channel openers on B-cell function. The aim of the present review is to summarize these experimental data which are sometimes divergent.  相似文献   

10.
ATP-sensitive K(+) (K(ATP)) channels are the target of a number of pharmacological agents, blockers like hypoglycemic sulfonylureas and openers like the hypotensive cromakalim and diazoxide. These agents act on the channel regulatory subunit, the sulfonylurea receptor (SUR), which is an ABC protein with homologies to P-glycoprotein (P-gp). P-gp is a multidrug transporter expressed in tumor cells and in some healthy tissues. Because these two ABC proteins both exhibit multispecific recognition properties, we have tested whether SUR ligands could be substrates of P-gp. Interaction with P-gp was assayed by monitoring ATPase activity of P-gp-enriched vesicles. The blockers glibenclamide, tolbutamide, and meglitinide increased ATPase activity, with a rank order of potencies that correlated with their capacity to block K(ATP) channels. P-gp ATPase activity was also increased by the openers SR47063 (a cromakalim analog), P1075 (a pinacidil analog), and diazoxide. Thus, these molecules bind to P-gp (although with lower affinities than for SUR) and are possibly transported by P-gp. Competition experiments among these molecules as well as with typical P-gp substrates revealed a structural similarity between drug binding domains in the two proteins. To rationalize the observed data, we addressed the molecular features of these proteins and compared structural models, computerized by homology from the recently solved structures of murine P-gp and bacterial ABC transporters MsbA and Sav1866. Considering the various residues experimentally assigned to be involved in drug binding, we uncovered several hot spots, which organized spatially in two main binding domains, selective for SR47063 and for glibenclamide, in matching regions of both P-gp and SUR.  相似文献   

11.
Somatostatin inhibition of growth hormone (GH) secretion from adenohypophysis cells in culture was antagonized by the antidiabetic sulfonylurea glipizide (K0.5 = 10 +/- 5 nM). Although all cells that hyperpolarize with somatostatin have ATP-sensitive K+ channels, the antagonistic actions of the hormone and of the antidiabetic drug are due to effects on different types of K+ channels. Diazoxide, an opener of ATP-sensitive K+ channels, abolished the increase of intracellular Ca2+ provoked by growth hormone releasing factor (GRF) and induced inhibition of GRF stimulated GH secretion (K0.5 = 138 microM). This inhibition by diazoxide was largely suppressed by glipizide which blocked the ATP-sensitive K+ channels opened by diazoxide. In summary, hormonal activation of GH secretion is inhibited by openers of ATP-sensitive K+ channels, while hormonal inhibition of GH secretion is suppressed by blockers of ATP-sensitive K+ channels.  相似文献   

12.
13.
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.  相似文献   

14.
Cl- interference with the epithelial Na+ channel ENaC   总被引:2,自引:0,他引:2  
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl- channel properties, regulates other ion channels. CFTR inhibits murine or rat epithelial Na+ channel (mENaC or rENaC) currents in many epithelial and non-epithelial cells, whereas murine or rat ENaC increases CFTR functional expression. These regulatory interactions are reproduced in Xenopus oocytes where both the open probability and surface expression of wild type CFTR Cl- channels are increased when CFTR is co-expressed with alphabetagamma mENaC, and conversely the activity of mENaC is inhibited after wild type CFTR activation. Using the Xenopus oocyte expression system, differences in functional regulatory interactions were observed when CFTR was co-expressed with either alphabetagamma mENaC or alphabetagamma human ENaC (hENaC). Co-expression of CFTR and alphabetagamma mENaC or hENaC resulted in an approximately 3-fold increase in CFTR Cl- current compared with oocytes expressing CFTR alone. Oocytes co-injected with both CFTR and mENaC or hENaC expressed an amiloride-sensitive whole cell current that was decreased compared with that observed with the injection of mENaC or hENaC alone before CFTR activation with forskolin/3-isobutyl-1-methylxanthine. CFTR activation resulted in a further 50% decrease in mENaC-mediated currents, an approximately 20% decrease in alpha-T663-hENaC-mediated currents, and essentially no change in alpha-A663-hENaC-mediated currents. Changes in ENaC functional expression correlated with ENaC surface expression by oocyte surface biotinylation experiments. Assessment of regulatory interactions between CFTR and chimeric mouse/human ENaCs suggest that the 20 C-terminal amino acid residues of alpha ENaC confer species specificity regarding ENaC inhibition by activated CFTR.  相似文献   

16.
Little is known about the presence and function of two-pore domain K(+) (K(2P)) channels in vascular smooth muscle cells (VSMCs). Five members of the K(2P) channel family are known to be directly activated by arachidonic acid (AA). The purpose of this study was to determine 1) whether AA-sensitive K(2P) channels are expressed in cerebral VSMCs and 2) whether AA dilates the rat middle cerebral artery (MCA) by increasing K+ currents in VSMCs via an atypical K+ channel. RT-PCR revealed message for the following AA-sensitive K(2P) channels in rat MCA: tandem of P domains in weak inward rectifier K+ (TWIK-2), TWIK-related K+ (TREK-1 and TREK-2), TWIK-related AA-stimulated K+ (TRAAK), and TWIK-related halothane-inhibited K+ (THIK-1) channels. However, in isolated VSMCs, only message for TWIK-2 was found. Western blotting showed that TWIK-2 is present in MCA, and immunohistochemistry further demonstrated its presence in VSMCs. AA (10-100 microM) dilated MCAs through an endothelium-independent mechanism. AA-induced dilation was not affected by inhibition of cyclooxygenase, epoxygenase, or lipoxygenase or inhibition of classical K+ channels with 10 mM TEA, 3 mM 4-aminopyridine, 10 microM glibenclamide, or 100 microM Ba2+. AA-induced dilations were blocked by 50 mM K+, indicating involvement of a K+ channel. AA (10 microM) increased whole cell K+ currents in dispersed cerebral VSMCs. AA-induced currents were not affected by inhibitors of the AA metabolic pathways or blockade of classical K+ channels. We conclude that AA dilates the rat MCA and increases K+ currents in VSMCs via an atypical K+ channel that is likely a member of the K(2P) channel family.  相似文献   

17.
I W Smoak 《Teratology》1999,60(5):260-264
Cromakalim is a K(+) channel opener that causes smooth muscle relaxation by activating ATP-sensitive K(+) (K(ATP)) channels and producing membrane hyperpolarization. Cromakalim counteracts sulfonylurea-induced K(ATP) channel inhibition in adult cells, but little is known regarding its embryonic effects, alone or in combination with sulfonylureas. K(ATP) channels have been demonstrated in the embryo, but their role in normal and abnormal development is unknown. Early-somite mouse embryos were exposed for 24 hr in vitro to cromakalim at concentrations of 0 (Cntl), 1, 10, 100, 200, or 500 microM in 0.125% DMSO. Embryos were also exposed for 24 hr in vitro to a dysmorphogenic tolbutamide concentration (110 microg/ml) combined with a subdysmorphogenic concentration of cromakalim (1 microM). Embryos were evaluated for somite number, heart rate, malformations, and embryonic and yolk sac protein content. Embryos exposed to 1 microM cromakalim were similar to controls. Cromakalim exposure increased malformation rates at concentrations >/=200 microM, decreased heart rates at >/=10 microM, and decreased somite and protein values at 500 microM. Defects involved cranial neural tube, optic vesicle, heart, and somites. A malformation rate of 59% in embryos exposed to 110 microg/ml tolbutamide was reduced to 13% by adding 1 microM cromakalim to the culture medium. Heart rate, somite number, and protein values were also improved by combined exposure to cromakalim and tolbutamide compared with exposure to tolbutamide alone. These results support previous findings with diazoxide (K(+) channel opener) and chlorpropamide (sulfonylurea) and further suggest a potential role for K(ATP) channel effects in sulfonylurea-induced dysmorphogenesis.  相似文献   

18.
Coexpression of sulfonylurea receptor (SUR) and inward-rectifying K+ channel (Kir6.1 or 6.2) subunit yields ATP-sensitive K+ (K(ATP)) channels. Three subtypes of SUR have been cloned: pancreatic (SUR1), cardiac (SUR2A), and vascular smooth muscle (SUR2B). The distinct responses to K+ channel openers (KCOs) produced in different tissues may depend on the SUR isoform of K(ATP) channel. Therefore, we investigated the effects of pinacidil and diazoxide, two KCOs, on K(ATP) currents in intestinal smooth muscle cells of the rat colon (circular layer) using whole-cell voltage clamp. Pinacidil stimulated a time-independent K+ current evoked by various test potentials from a holding potential of -70 mV. The reversal potential of the stimulated current was about -75 mV, which is close to the equilibrium potential for K+ (E(K)). Both pinacidil and diazoxide dose-dependently stimulated K+ currents (evoked by ramp pulses), with EC50 values of 1.3 and 34.2 microM, respectively. The stimulated current was completely reversed by glybenclamide (3 microM). Since the EC50 values are close to those reported for vascular smooth muscle (VSM) cells, the SUR subtype may be similar to that in VSM cells, and could form the functional K(ATP) channel in rat colonic smooth muscle cells.  相似文献   

19.
Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is inhibited by a number of different classes of organic anions which are able to enter and block the channel pore from its cytoplasmic end. Here I show, using patch clamp recording from CFTR-transfected baby hamster kidney cell lines, that the cis-unsaturated fatty acid arachidonic acid also inhibits CFTR Cl- currents when applied to the cytoplasmic face of excised membrane patches. This inhibition was of a relatively high affinity compared with other known CFTR inhibitors, with an apparent Kd of 6.5 +/- 0.9 microM. However, in contrast with known CFTR pore blockers, inhibition by arachidonic acid was only very weakly voltage dependent, and was insensitive to the extracellular Cl- concentration. Arachidonic acid-mediated inhibition of CFTR Cl- currents was not abrogated by inhibitors of lipoxygenases, cyclooxygenases or cytochrome P450, suggesting that arachidonic acid itself, rather than some metabolite, directly affects CFTR. Similar inhibition of CFTR Cl- currents was seen with other fatty acids, with the rank order of potency linoleic > or = arachidonic > or = oleic > elaidic > or = palmitic > or = myristic. These results identify fatty acids as novel high affinity modulators of the CFTR Cl- channel.  相似文献   

20.
This study addresses the mechanisms by which a defect in CFTR impairs pancreatic duct bicarbonate secretion in cystic fibrosis. We used control (PANC-1) and CFTR-deficient (CFPAC-1; DeltaF508 mutation) cell lines and measured HCO3- extrusion by the rate of recovery of intracellular pH after an alkaline load and recorded whole cell membrane currents using patch clamp techniques. 1) In PANC-1 cells, cAMP causes parallel activation of Cl- channels and of HCO3- extrusion by DIDS-sensitive and Na+-independent Cl-/HCO3- exchange, both effects being inhibited by Cl- channel blockers NPPB and glibenclamide. 2) In CFPAC-1 cells, cAMP fails to stimulate Cl-/HCO3- exchange and Cl- channels, except after promoting surface expression of DeltaF508-CFTR by glycerol treatment. Instead, raising intracellular Ca2+ concentration to 1 micromol/l or stimulating purinergic receptors with ATP (10 and 100 micromol/l) leads to parallel activation of Cl- channels and HCO3- extrusion. 3) K+ channel function is required for coupling cAMP- and Ca2+-dependent Cl- channel activation to effective stimulation of Cl-/HCO3- exchange in control and CF cells, respectively. It is concluded that stimulation of pancreatic duct bicarbonate secretion via Cl-/HCO3- exchange is directly correlated to activation of apical membrane Cl- channels. Reduced bicarbonate secretion in cystic fibrosis results from defective cAMP-activated Cl- channels. This defect is partially compensated for by an increased sensitivity of CF cells to purinergic stimulation and by alternative activation of Ca2+-dependent Cl- channels, mechanisms of interest with respect to possible treatment of cystic fibrosis and of related chronic pancreatic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号