首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tropical forests harbor diverse ecological communities of plants and animals that are organized in complex interaction networks. The diversity and structure of plant–animal interaction networks may change along elevational gradients and in response to human‐induced habitat fragmentation. While previous studies have analyzed the effects of elevation and forest fragmentation on species interaction networks in isolation, to our knowledge no study has investigated whether the effects of forest fragmentation on species interactions may differ along elevational gradients. In this study, we analyzed main and interaction effects of elevation and forest fragmentation on plant–frugivore interaction networks at plant and bird species level. Over a period spanning two years, we recorded plant–frugivore interactions at three elevations (1000, 2000 and 3000 m a.s.l.) and in two habitat types (continuous and fragmented forest) in tropical montane forests in southern Ecuador. We found a consistent effect of elevation on the structure of plant–frugivore networks. We observed a decrease in the number of effective bird partners of plants and, thus, a decline in the redundancy of bird species with increasing elevation. Furthermore, bird specialization on specific plant partners increased towards high elevations. Fragmentation had a relatively weak effect on the interaction networks for both plant and bird species, but resulted in a significant increase in bird specialization in fragmented forests at high elevations. Our results indicate that forest fragmentation may have stronger effects on plant–frugivore interaction networks at high compared to low elevations because bird species richness declined more steeply towards high elevations than plant species richness. We conclude that conservation efforts should prioritize the maintenance of consumer diversity, for instance by maintaining stretches of continuous forest. This applies in particular to species‐poor communities, such as those at high elevations, as the ecological processes in these communities seem most sensitive towards forest fragmentation.  相似文献   

2.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

3.
Studies on the responses of ant–plant interactions to land‐use change have mainly focused on tropical habitats, usually without considering the impacts on the structure of interaction networks. Here we show that land‐use modifies the structure of the ant–plant interaction networks in a temperate habitat. Ant–plant interactions and plant diversity were recorded in an oak forest and agricultural land in central Mexico. We registered five ant species in the oak forest, and four ant species in the agricultural land. Plant diversity was higher in the agricultural land than in the oak forest. In the ant–plant networks of both sites, our results showed a higher dependence of ants on the plants on which they feed than vice versa, and the ants Formica spp. and the plants Barkleyanthus salicifolius were the species with the most strength and greatest influence in the network structure. The ant–plant network in the oak forest showed a nested structure. However, the network at the agricultural land site showed non‐nestedness; the identity of both ants and plants with the highest values of specialization was different and the number of ant species in the network was decreased, but the number of plant species with which they interacted significantly increased. Both ant–plant networks were equally tolerant to simulated extinction of individual species. We conclude that temperate forest ant–plant networks can be inherently fragile and susceptible to the effects of agricultural land‐use change, not on the number of interacting species but on their identity.  相似文献   

4.
Plant–animal mutualistic interactions, such as pollination and seed dispersal, affect ecosystem functioning by driving plant population dynamics. However, little is known of how the diversity of interactions in these mutualistic networks determines plant regeneration dynamics. To fill this gap, interaction networks should not only account for the number of seeds dispersed by animals, but also for seed fate after dispersal. Here, we compare plant–animal networks at both the seed dispersal and seedling recruitment stage to evaluate how interaction diversity, represented by different network metrics, changes throughout the process of plant regeneration. We focused on a system with six species of frugivorous birds and three species of fleshy‐fruited trees in the temperate secondary forest of the Cantabrian Range (northern Iberian Peninsula). We considered two plant cohorts corresponding to two fruiting years showing strong differences in fruit and frugivore abundance. Seed dispersal interactions were estimated from a spatially‐explicit, field‐validated model predicting tree and bird species‐specific seed deposition in different microhabitats. These interactions were further transformed into interactions at the seedling recruitment stage by accounting for plant‐ and microhabitat‐specific seed fates estimated from field sampling. We found that network interaction diversity varied across plant regeneration stages and cohorts, both in terms of the evenness and the number of paired interactions. Tree–bird interactions were more evenly distributed across species pairs at the recruitment stage than at the seed deposition stage, although some interactions disappeared in the seed‐to‐seedling transition for one plant cohort. The variations in interaction diversity were explained by between‐plant differences in post‐dispersal seed fate and in inter‐annual fruit production, rather than by differences between frugivores in seed deposition patterns. These results highlight the need for integrating plant traits and disperser quality to predict the functional outcome of plant–animal mutualistic networks.  相似文献   

5.
1. Environmental heterogeneity can produce effects that cascade up to higher trophic levels and affect species interactions. We hypothesized that grazing-dependent habitat heterogeneity and grazing-independent host plant heterogeneity would influence directly and indirectly a host-parasitoid interaction in a woodland habitat. 2. Thistles were planted randomly in 20 birch woodlands, half of which are grazed by cattle. The abundances of two species of seed herbivore and their shared parasitoid were measured, and related to habitat and host-plant heterogeneity. 3. The presence of cattle grazing created a structurally and compositionally distinct plant assemblage from the ungrazed seminatural situation. Grazing did not affect the number or dispersion of the host plant underpinning the host-parasitoid interaction. 4. The density of one insect herbivore, Tephritis conura, and its parasitoid Pteromalus elevatus was significantly increased by the presence of cattle; but another herbivore, Xyphosia miliaria, was unaffected. The percentage of parasitism of T. conura was increased in grazed habitat occurring at twice the rate found in ungrazed habitat. 5. The increase in T. conura abundance was correlated with increased species richness and cover of forbs in grazed sites. This effect of grazing-dependent habitat variation on host insect density cascaded up to parasitoid density and percentage of parasitism. Habitat heterogeneity had a further direct, positive effect on parasitoid density and percentage of parasitism after controlling for host-insect density. 6. Independent of grazing, heterogeneity in host-plant flowering, architecture and stature further affected T. conura and its parasitoid's densities. Parasitoid density was also affected by the dispersion of the host plant. 7. A combination of habitat and host-plant scale environmental heterogeneity influenced a host-parasitoid interaction indirectly and directly, providing a rare example of an anthropogenic disturbance positively affecting a tertiary trophic level. This finding highlights the need to consider not only the importance of bottom-up effects for top-down processes, but also the role of environmental heterogeneity arising from anthropogenic disturbance for trophic interactions such as parasitism.  相似文献   

6.
Forest fragmentation and local disturbance are prevailing threats to tropical forest ecosystems and affect frugivore communities and animal seed dispersal in different ways. However, very little is known about the effects of anthropogenic forest edges and of local disturbance on the structure and robustness of plant–frugivore networks. We carried out focal tree observations to record the frugivore species feeding on eight canopy tree species in the forest interior and at forest–farmland edges in a little and a highly disturbed part of a Kenyan rain forest. For each frugivore species, we recorded its body mass and its forest dependence. We examined how forest edge and local disturbance affected the abundance, the richness and the composition of the frugivore community and tested whether forest edge and local disturbance affected plant frugivore networks. Abundance and species richness of frugivores were higher at edges than in the forest interior. Forest visitors and small‐bodied frugivores increased, while forest specialists decreased in abundance at forest edges. The changes in frugivore community composition resulted in plant–frugivore networks that were more connected, more nested and more robust against species extinctions at forest–farmland edges than in the forest interior. Network specialization was lower at forest edges than in the forest interior because at the edges plant specialization on frugivores was very low in small‐fruited species. In contrast, small‐fruited plants were more specialized than large‐fruited plants in the forest interior. Our findings suggest that forest‐visiting birds may stabilize seed‐dispersal services for small‐fruited plant species at rain forest margins, while seed‐dispersal services for large‐fruited plant species may be disrupted at forest edges due to the decrease of large‐bodied frugviores. To assess the ultimate consequences of bird movements from farmland to forest edges for ecosystem functioning, future studies are required to investigate the seed‐dispersal qualities provided by forest‐visiting bird species in the tropics.  相似文献   

7.
Ecological interaction networks, such as those describing the mutualistic interactions between plants and their pollinators or between plants and their frugivores, exhibit non‐random structural properties that cannot be explained by simple models of network formation. One factor affecting the formation and eventual structure of such a network is its evolutionary history. We argue that this, in many cases, is closely linked to the evolutionary histories of the species involved in the interactions. Indeed, empirical studies of interaction networks along with the phylogenies of the interacting species have demonstrated significant associations between phylogeny and network structure. To date, however, no generative model explaining the way in which the evolution of individual species affects the evolution of interaction networks has been proposed. We present a model describing the evolution of pairwise interactions as a branching Markov process, drawing on phylogenetic models of molecular evolution. Using knowledge of the phylogenies of the interacting species, our model yielded a significantly better fit to 21% of a set of plant–pollinator and plant–frugivore mutualistic networks. This highlights the importance, in a substantial minority of cases, of inheritance of interaction patterns without excluding the potential role of ecological novelties in forming the current network architecture. We suggest that our model can be used as a null model for controlling evolutionary signals when evaluating the role of other factors in shaping the emergence of ecological networks.  相似文献   

8.
Soumya Prasad  R. Sukumar 《Oikos》2010,119(3):514-523
The quantity of fruit consumed by dispersers is highly variable among individuals within plant populations. The outcome of such selection operated by frugivores has been examined mostly with respect to changing spatial contexts. The influence of varying temporal contexts on frugivore choice, and their possible demographic and evolutionary consequences is poorly understood. We examined if temporal variation in fruit availability across a hierarchy of nested temporal levels (interannual, intraseasonal, 120 h, 24 h) altered frugivore choice for a complex seed dispersal system in dry tropical forests of southern India. The interactions between Phyllanthus emblica and its primary disperser (ruminants) was mediated by another frugivore (a primate), which made large quantities of fruit available on the ground to ruminants. The direction and strength of crop size and neighborhood effects on this interaction varied with changing temporal contexts. Fruit availability was higher in the first of the two study years, and at the start of the season in both years. Fruit persistence on trees, determined by primate foraging, was influenced by crop size and conspecific neighborhood densities only in the high fruit availability year. Fruit removal by ruminants was influenced by crop size in both years and neighborhood densities only in the high availability year. In both years, these effects were stronger at the start of the season. Intraseasonal reduction in fruit availability diminished inequalities in fruit removal by ruminants and the influence of crop size and fruiting neighborhoods. All trees were not equally attractive to frugivores in a P. emblica population at all points of time. Temporal asymmetry in frugivore‐mediated selection could reduce potential for co‐evolution between frugivores and plants by diluting selective pressures. Inter‐dependencies formed between disparate animal consumers can add additional levels of complexity to plant–frugivore mutualistic networks and have potential reproductive consequences for specific individuals within populations.  相似文献   

9.
The effects of habitat fragmentation on plant–animal interactions may emerge at different spatial scales, depending on the species‐specific perception response of the interacting animals. Furthermore, changes in habitat cover and configuration commonly occur simultaneously, hampering efforts to understand and mitigate the impact of fragmentation on these biotic interactions. In order to account for the relative influence of habitat loss and fragmentation on plant–animal interactions, we quantified habitat structure in sixteen sectors (nested circular areas of 100 and 200 m radii) in four different localities (four sectors per locality) across the Cantabrian Range in NW Spain. In the center of each 100 m radius sector, we measured the magnitude of two ecologically opposite (mutualistic vs antagonistic) interactions in individual holly trees Ilex aquifolium which strongly determine the regeneration process in this plant species: frugivory by birds and seed predation by rodents. We found that habitat fragmentation, though not habitat loss, affected the magnitude of both plant–animal interactions. However, these effects were conditioned by the strong differences in spatial heterogeneity in habitat structure between localities. In fact, the effect of habitat fragmentation on both plant–animal interactions disappeared when the locality in which sectors were sited was taken into account. This study highlights that 1) habitat spatial configuration, far from being a negligible component of habitat structure, is in fact able to influence key ecological processes such as plant–animal interactions, and 2) the potential spatial and structural complexity of localities makes a regional approach (i.e. that involving many localities) indispensable in the quest for comprehensive understanding of the effects of habitat structure on biodiversity in real‐world fragmented landscapes.  相似文献   

10.
Despite the recognized importance of indirect plant–plant interactions for community structure, we still need to improve our current knowledge on how their outcomes are consistent in space and time, as well as reciprocal between participating species. These caveats are especially relevant in the case of indirect interactions mediated by animals, whose behavior may show high variability. We studied consistency and reciprocity of frugivore‐mediated interactions between fleshy‐fruited trees. For three years we examined the influence of crop size and neighborhood characteristics (con‐ and heterospecific fruit abundance and forest cover) on frugivory rates on Crataegus monogyna and Ilex aquifolium, two coexisting species in the secondary forests of the Cantabrian range that share a guild of frugivorous birds. Crop size and neighborhood characteristics influenced frugivory on C. monogyna and I. aquifolium. Both con‐ and heterospecific fruit abundance affected frugivory, evidencing the occurrence of indirect interactions between trees, although the strength and sign of these effects varied between tree species as well as across years within species. By showing complex temporal patterns in the consistency and reciprocity of indirect interactions, this study emphasizes the need for multispecific, long‐term studies to assess the actual contribution of animal‐mediated plant–plant indirect interactions to community dynamics.  相似文献   

11.
Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density‐dependent demographic parameters and species interactions. We investigated plant‐pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1‐ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant‐pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands.  相似文献   

12.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

13.
Complex networks of species interactions might be determined by species traits but also by simple chance meetings governed by species abundances. Although the idea that species traits structure mutualistic networks is appealing, most studies have found abundance to be a major structuring mechanism underlying interaction frequencies. With a well‐resolved plant–hummingbird interaction network from the Neotropical savanna in Brazil, we asked whether species morphology, phenology, nectar availability and habitat occupancy and/or abundance best predicted the frequency of interactions. For this, we constructed interaction probability matrices and compared them to the observed plant‐hummingbird matrix through a likelihood approach. Furthermore, a recently proposed modularity algorithm for weighted bipartite networks was employed to evaluate whether these factors also scale‐up to the formation of modules in the network. Interaction frequencies were best predicted by species morphology, phenology and habitat occupancy, while species abundances and nectar availability performed poorly. The plant–hummingbird network was modular, and modules were associated to morphological specialization and habitat occupancy. Our findings highlight the importance of traits as determinants of interaction frequencies and network structure, corroborating the results of a previous study on a plant–hummingbird network from the Brazilian Atlantic Forest. Thus, we propose that traits matter more in tropical plant–hummingbird networks than in less specialized systems. To test the generality of this hypothesis, future research could employ geographic or taxonomic cross‐system comparisons contrasting networks with known differences in level of specialization.  相似文献   

14.
Question: What are the long‐term effects of grazing exclusion on the population structure and dynamics of, and interactions among, three dominant shrub species? Location: Grass‐shrub Patagonian steppe, Chubut, Argentina. Methods: Permanent plots were established in grazed paddocks and paddocks excluded from grazing in representative Patagonian rangelands. Shrub abundance, population size‐structure, short‐term (two 3‐yr periods) and long‐term (matrix models) population dynamics, and neighborhood interactions of three native and codominant shrub species (Mulinum spinosum, Senecio filaginoides and Adesmia volckmanni) were measured and analysed using different statistical approaches. Results: The total density of shrubs was 74% higher in paddocks excluded from grazing, owing mainly to increases in Mulinum (80%) and Senecio (68%) species. However, differences in size structure between ungrazed and grazed paddocks were only detected in Mulinum. Demographic rates differed between shrub species, time‐periods and grazing conditions. In particular, recruitment in the short term (especially in wet years) and population growth rate in the long term (λ) were higher in paddocks excluded from grazing only in Mulinum populations. Senecio populations showed a marginal increase in recruitment and mortality independent of the grazing condition in the wet and dry period. Grazing exclusion modified the balance of neighborhood interactions among the three shrub species. In grazing‐exclusion paddocks, there was a balance between positive and negative interspecific interactions, while in grazed paddocks there were more negative intraspecific and interspecific interactions, resulting in a net negative balance of neighborhood interactions. Conclusions: Our understanding of woody encroachment in arid rangelands can be informed through evaluation of direct and indirect effects of grazing exclusion on the abundance and demography of dominant woody species. In Patagonian arid steppes, the occurrence of woody encroachment in rangelands excluded from grazing can be explained by altered responses in plant‐animal and plant‐plant interactions among shrub species.  相似文献   

15.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

16.
Frugivory and seed dispersal are key processes for the maintenance of biodiversity. This is particularly true in the Neotropics, where most plant species depend on animals to disperse their seeds and most birds and mammals include fruits in their diets. We performed a continental‐scale literature review to build a database of interactions between neotropical fruits and fruit‐eating birds and mammals. Our objective was to evaluate the viability of combining literature data from different studies to describe the structure of highly diverse fruit–frugivore neotropical communities. We investigated sites that had been the focus of studies of at least four different avian and/or mammalian taxonomic orders and we included in our database only those conducted for at least a 6‐month period in order to account for the seasonality in fruit availability. In spite of a large number of study sites investigated for frugivory (n = 156), we found a huge gap in the knowledge of community‐wide fruit–frugivore interactions in the Neotropics, since most studies focused on single or a few species. Nevertheless, we were able to construct diverse plant–frugivore qualitative networks for 17 areas unevenly spread throughout the neotropical region. Using complex network analyses, we found that these networks were highly informative and non‐randomly organized. Most networks were both significantly nested and modular, characteristics related to stability and resilience in biological systems. We concluded that it is possible to use merged data to build networks for sites of conservation interest. The main advantage of using this approach is to optimize resources, avoiding exhaustive, costly and time‐consuming fieldwork when data is already available. Whilst bearing in mind the shortcomings of this methodology, these results can be used in studies aiming to understand the ecological processes structuring different communities in the neotropical region and to support conservation and restoration actions.  相似文献   

17.
In the face of global pollinator decline, extensively managed grasslands play an important role in supporting stable pollinator communities. However, different types of extensive management may promote particular plant species and thus particular functional traits. As the functional traits of flowering plant species (e.g., flower size and shape) in a habitat help determine the identity and frequency of pollinator visitors, they can also influence the structures of plant−pollinator interaction networks (i.e., pollination networks). The aim of this study was to examine how the type of low‐intensity traditional management influences plant and pollinator composition, the structure of plant−pollinator interactions, and their mediation by floral and insect functional traits. Specifically, we compared mown wooded meadows to grazed alvar pastures in western Estonia. We found that both management types fostered equal diversity of plants and pollinators, and overlapping, though still distinct, plant and pollinator compositions. Wooded meadow pollination networks had significantly higher connectance and specialization, while alvar pasture networks achieved higher interaction diversity at a standardized sampling of interactions. Pollinators with small body sizes and short proboscis lengths were more specialized in their preference for particular plant species and the specialization of individual pollinators was higher in alvar pastures than in wooded meadows. All in all, the two management types promoted diverse plant and pollinator communities, which enabled the development of equally even and nested pollination networks. The same generalist plant and pollinator species were important for the pollination networks of both wooded meadows and alvar pastures; however, they were complemented by management‐specific species, which accounted for differences in network structure. Therefore, the implementation of both management types in the same landscape helps to maintain high species and interaction diversity.  相似文献   

18.
Interactions among neighbors influence the structure of communities of sessile organisms. Closely related species tend to share habitat and resource requirements and to interact with the same mutualists and natural enemies so that the strength of interspecific interactions tends to decrease with evolutionary divergence time. Nevertheless, the degree to which such phylogenetically related ecological interactions structure plant communities remains unclear. Using data from five large mapped forest plots combined with a DNA barcode mega‐phylogeny, we employed an individual‐based approach to assess the collective effects of focal tree size on neighborhood phylogenetic relatedness. Abundance‐weighted average divergence time for all neighbors (ADT_all) and for heterospecific neighbors only (ADT_hetero) were calculated for each individual of canopy tree species. Within local neighborhoods, we found phylogenetic composition changed with focal tree size. Specifically, significant increases in ADT_all with focal tree size were evident at all sites. In contrast, there was no significant change in ADT_hetero with tree size in four of the five sites for both sapling‐sized and all neighbors, even at the smallest neighbourhood scale (0–5 m), suggesting a limited role for phylogeny‐dependent interactions. However, there were inverse relationships between focal tree size and the proportion of heterospecific neighbors belonging to closely related species at some sites, providing evidence for negative phylogenetic density dependence. Overall, our results indicate that negative interaction with conspecifics had a much greater impact on neighborhood assemblages than interactions among closely related species and could contribute to community structure and diversity maintenance in different forest communities.  相似文献   

19.
Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co‐evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co‐phylogenetic congruence of plant–animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower‐visiting insects than plants. Phylogenetic signal and overall co‐phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co‐phylogenetic correspondence in plant–pollinator interactions could be associated with less reliable mutualism and erratic co‐evolutionary change.  相似文献   

20.
Plant–frugivore mutualistic assemblages frequently combine multiple, complementary or not (i.e. redundant), distinct effects of animal species. To a large extent, the outcomes of these interactions crucially depend on the delayed consequences of frugivore effectiveness on plant recruitment. We evaluated seed dispersal effectiveness for three plant species in a Brazilian Atlantic forest with a marked habitat heterogeneity defined by bamboo and non‐bamboo patches. Twenty one, 23 and 14 bird species ate fruits of Euterpe edulis, Sloanea guianensis and Virola bicuhyba trees, respectively. For both Euterpe and Virola, visitation rate was the variable contributing for most variance across frugivore species in the quantitative component of effectiveness (QC, which depends on the combined effects of interaction frequency and per‐interaction effect), while the number of fruits manipulated/visit had the greatest contribution in Sloanea. By combining observational data and experimental seed addition for Euterpe we tested for consistent functional patterns among species in the frugivore assemblage, extending beyond the fruit removal stage. Rankings of QC across Euterpe frugivores remained consistent with their relative contributions to fruit removal and, importantly, with their contributions to seedling establishment. Yet, QC of effectiveness across Euterpe frugivores were more homogeneous at the fruit removal and dispersal stages (contribution to seed dispersal) than for the delayed, dissemination and post‐dispersal effects on recruitment. High complementarity of diversified frugivore assemblages may increase through added variance in their delayed effects related to qualitative components of effectiveness. Our results underscore the importance of assessing how dispersal services provided by mutualistic frugivores play complementary, rather than redundant, roles in seed dispersal within heterogeneous landscapes. Such ecological outcomes highlight the value of combining observational and experimental field designs to assess functional diversity patterns of tropical frugivore assemblages and delayed effects of their interactions with plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号