首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ADP-ribosylation factor (Arf) family of GTP-binding proteins are regulators of membrane traffic and the actin cytoskeleton. Both negative and positive regulators of Arf, the centaurin beta family of Arf GTPase-activating proteins (GAPs) and Arf guanine nucleotide exchange factors, contain pleckstrin homology (PH) domains and are activated by phosphoinositides. To understand how the activities are coordinated, we have examined the role of phosphoinositide binding for Arf GAP function using ASAP1/centaurin beta4 as a model. In contrast to Arf exchange factors, phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) specifically activated Arf GAP. D3 phosphorylated phosphoinositides were less effective. Activation involved PtdIns-4,5-P(2) binding to the PH domain; however, in contrast to the Arf exchange factors and contrary to predictions based on the current paradigm for PH domains as independently functioning recruitment signals, we found the following: (i) the PH domain was dispensable for targeting to PDGF-induced ruffles; (ii) activation and recruitment could be uncoupled; (iii) the PH domain was necessary for activity even in the absence of phospholipids; and (iv) the Arf GAP domain influenced localization and lipid binding of the PH domain. Furthermore, PtdIns-4,5-P(2) binding to the PH domain caused a conformational change in the Arf GAP domain detected by limited proteolysis. Thus, these data demonstrate that PH domains can function as allosteric sites. In addition, differences from the published properties of the Arf exchange factors suggest a model in which feedforward and feedback loops involving lipid metabolites coordinate GTP binding and hydrolysis by Arf.  相似文献   

2.
Dynamin and its related proteins are a group of mechanochemical proteins involved in the modulation of lipid membranes in various biological processes. Here we investigate the nature of membrane binding of the Arabidopsis dynamin-like 6 (ADL6) involved in vesicle trafficking from the trans-Golgi network to the central vacuole. Fractionation experiments by continuous sucrose gradients and gel filtration revealed that the majority of ADL6 is associated with membranes in vivo. Amino acid sequence analysis revealed that ADL6 has a putative pleckstrin homology (PH) domain. In vitro lipid binding assays demonstrated that ADL6 showed high affinity binding to phosphatidylinositol 3-phosphate (PtdIns-3-P) and that the PH domain was responsible for this interaction. However, the PH domain alone binds equally well to both PtdIns-3-P and phosphatidylinositol 4-phosphate (PtdIns-4-P). Interestingly, the high affinity binding of the PH domain to PtdIns-3-P was restored by a protein-protein interaction between the PH domain and the C-terminal region. In addition, deletion of the inserted regions within the PH domain results in high affinity binding of the PH domain to PtdIns-3-P. These results suggest that ADL6 binds specifically to PtdIns-3-P and that the lipid binding specificity is determined by the interaction between the PH domain and the C-terminal domain of ADL6.  相似文献   

3.
Song X  Xu W  Zhang A  Huang G  Liang X  Virbasius JV  Czech MP  Zhou GW 《Biochemistry》2001,40(30):8940-8944
The recruitment of specific cytosolic proteins to intracellular membranes through binding phosphorylated derivatives of phosphatidylinositol (PtdIns) controls such processes as endocytosis, regulated exocytosis, cytoskeletal organization, and cell signaling. Protein modules such as FVYE domains and PH domains that bind specifically to PtdIns 3-phosphate (PtdIns-3-P) and polyphosphoinositides, respectively, can direct such membrane targeting. Here we show that two representative Phox homology (PX) domains selectively bind to specific phosphatidylinositol phosphates. The PX domain of Vam7p selectively binds PtdIns-3-P, while the PX domain of the CPK PI-3 kinase selectively binds PtdIns-4,5-P(2). In contrast, the PX domain of Vps5p displays no binding to any PtdInsPs that were tested. In addition, the double mutant (Y42A/L48Q) of the PX domain of Vam7p, reported to cause vacuolar trafficking defects in yeast, has a dramatically decreased level of binding to PtdIns-3-P. These data reveal that the membrane targeting function of the Vam7p PX domain is based on its ability to associate with PtdIns-3-P, analogous to the function of FYVE domains.  相似文献   

4.
Psachoulia E  Sansom MS 《Biochemistry》2008,47(14):4211-4220
The mechanism of interaction of pleckstrin homology (PH) domains with phosphatidylinositol 4,5-bisphosphate (PIP 2)-containing lipid bilayers remains uncertain. While crystallographic studies have emphasized PH-inositol 1,4,5-trisphosphate (IP 3) interactions, biophysical studies indicate a degree of less specific protein-bilayer interactions. We have used molecular dynamics simulations to characterize the interactions of the PH domain from phospholipase C-delta1 with IP 3 and with PIP 2, the latter in lipid bilayers and in detergent micelles. Simulations of the PH domain in water reveal a reduction in protein flexibility when IP 3 is bound. Simulations of the PH domain bound to PIP 2 in lipid bilayers indicate a tightening of ligand-protein interactions relative to the PH-IP 3 complex, alongside formation of H-bonds between PH side chains and lipid (PC) headgroups, and a degree of penetration of hydrophobic side chains into the core of the bilayer. Comparison with simulations of the PH-bound domain to a PC bilayer in the absence of PIP 2 suggests that the presence of PIP 2 increases the extent of PH-membrane interactions. Thus, comparative molecular dynamics simulations reveal how a PI-binding domain undergoes changes in conformational dynamics on binding to a PIP 2-containing membrane and how interactions additional to those with the PI headgroup are formed.  相似文献   

5.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics.  相似文献   

6.
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.  相似文献   

7.
Targeting of a wide variety of proteins to membranes involves specific recognition of phospholipid head groups and insertion into lipid bilayers. For example, proteins that contain FYVE domains are recruited to endosomes through interaction with phosphatidylinositol 3-phosphate (PtdIns(3)P). However, the structural mechanism of membrane docking and insertion by this domain remains unclear. Here, the depth and angle of micelle insertion and the lipid binding properties of the FYVE domain of early endosome antigen 1 are estimated by NMR spectroscopy. Spin label probes incorporated into micelles identify a hydrophobic protuberance that inserts into the micelle core and is surrounded by interfacially active polar residues. A novel proxyl PtdIns(3)P derivative is developed to map the position of the phosphoinositide acyl chains, which are found to align with the membrane insertion element. Dual engagement of the FYVE domain with PtdIns(3)P and dodecylphosphocholine micelles yields a 6-fold enhancement of affinity. The additional interaction of phosphatidylserine with a conserved basic site of the protein further amplifies the micelle binding affinity and dramatically alters the angle of insertion. Thus, the FYVE domain is targeted to endosomes through the synergistic action of stereospecific PtdIns(3)P head group ligation, hydrophobic insertion and electrostatic interactions with acidic phospholipids.  相似文献   

8.
Recognition of phosphatidylinositol 3-phosphate (Ptdlns(3)P) is crucial for a broad range of cellular signaling and membrane trafficking events regulated by phosphoinositide (PI) 3-kinases. PtdIns(3)P binding by the FYVE domain of human early endosome autoantigen 1 (EEA1), a protein implicated in endosome fusion, involves two beta hairpins and an alpha helix. Specific amino acids, including those of the FYVE domain's conserved RRHHCRQCGNIF motif, contact soluble and micelle-embedded lipid and provide specificity for Ptdlns(3)P over Ptdlns(5)P and Ptdlns, as shown by heteronuclear magnetic resonance spectroscopy. Although the FYVE domain relies on a zinc-binding motif reminiscent of RING fingers, it is distinguished by ovel structural features and its ptdlns(3)P-binding site.  相似文献   

9.
The FYVE domain is a conserved protein motif characterized by its ability to bind with high affinity and specificity to phosphatidylinositol 3-phosphate (PI3P), a phosphoinositide highly enriched in early endosomes. The PI3P polar head group contacts specific amino acid residues that are conserved among FYVE domains. Despite full conservation of these residues, the ability of different FYVE domains to bind to endosomes in cells is highly variable. Here we show that the endosomal localization in intact cells absolutely requires structural features intrinsic to the FYVE domain in addition to the PI3P binding pocket. These features are involved in FYVE domain dimerization and in interaction with the membrane bilayer. These interactions, which are determined by non-conserved residues, are likely to be essential for the temporal and spatial control of protein associations at the membrane-cytosol interface within the endocytic pathway.  相似文献   

10.
Insulin evokes diverse biological effects through receptor-mediated tyrosine phosphorylation of the insulin receptor substrate (IRS) proteins. Here, we show that, in vitro, the IRS-1, -2 and -3 pleckstrin homology (PH) domains bind with different specificities to the 3-phosphorylated phosphoinositides. In fact, the IRS-1 PH domain binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3), the IRS-2 PH domain to phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2), and the IRS-3 PH domain to phosphatidylinositol 3-phosphate. When expressed in NIH-IR fibroblasts and L6 myocytes, the IRS-1 and -2 PH domains tagged with green fluorescent protein (GFP) are localized exclusively in the cytoplasm. Stimulation with insulin causes a translocation of the GFP-IRS-1 and -2 PH domains to the plasma membrane within 3-5 min. This translocation is blocked by the phosphatidylinositol 3-kinase (PI 3-K) inhibitors, wortmannin and LY294002, suggesting that this event is PI 3-K dependent. Interestingly, platelet-derived growth factor (PDGF) did not induce translocation of the IRS-1 and -2 PH domains to the plasma membrane, indicating the existence of specificity for insulin. In contrast, the GFP-IRS-3 PH domain is constitutively localized to the plasma membrane. These results reveal a differential regulation of the IRS PH domains and a novel positive feedback loop in which PI 3-K functions as both an upstream regulator and a downstream effector of IRS-1 and -2 signaling.  相似文献   

11.
The FYVE domain is a small zinc binding module that recognizes phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid enriched in membranes of early endosomes and other endocytic vesicles. It is usually present as a single module or rarely as a tandem repeat in eukaryotic proteins involved in a variety of biological processes including endo- and exocytosis, membrane trafficking and phosphoinositide metabolism. A number of FYVE domain-containing proteins are recruited to endocytic membranes through the specific interaction of their FYVE domains with PtdIns(3)P. Structures and PtdIns(3)P binding modes of several FYVE domains have recently been characterized, shedding light on the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and the current mechanism of the multivalent membrane anchoring by monomeric or dimeric FYVE domain are reviewed. This mechanism involves stereospecific recognition of PtdIns(3)P that is facilitated by non-specific electrostatic contacts and modulated by the histidine switch, and is accompanied by hydrophobic insertion. Contributions of each component to the FYVE domain specificity and affinity for PtdIns(3)P-containing membranes are discussed.  相似文献   

12.
FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE domains of unknown structure through the construction of high quality homology models for human FYVE sequences.  相似文献   

13.
Phox homology (PX) domains are named for a 130-amino acid region of homology shared with part of two components of the phagocyte NADPH oxidase (phox) complex. They are found in proteins involved in vesicular trafficking, protein sorting, and lipid modification. It was recently reported that certain PX domains specifically recognize phosphatidylinositol 3-phosphate (PtdIns-3-P) and drive recruitment of their host proteins to the cytoplasmic leaflet of endosomal and/or vacuolar membranes where this phosphoinositide is enriched. We have analyzed phosphoinositide binding by all 15 PX domains encoded by the Saccharomyces cerevisiae genome. All yeast PX domains specifically recognize PtdIns-3-P in protein-lipid overlay experiments, with just one exception (a significant sequence outlier). In surface plasmon resonance studies, four of the yeast PX domains bind PtdIns-3-P with high (micromolar range) affinity. Although the remaining PX domains specifically recognize PtdIns-3-P, they bind this lipid with only low affinity. Interestingly, many proteins with "low affinity" PX domains are known to form large multimeric complexes, which may increase the overall avidity for membranes. Our results establish that PtdIns-3-P, and not other phosphoinositides, is the target of all PX domains in S. cerevisiae and suggest a role for PX domains in assembly of multiprotein complexes at specific membrane surfaces.  相似文献   

14.
15.
FYVE domain proteins play key roles in regulating membrane traffic in eukaryotic cells. The FYVE domain displays a remarkable specificity for the head group of the target lipid, phosphatidylinositol 3-phosphate (PtdIns[3]P). We have identified five putative FYVE domain proteins in the genome of the protozoan parasite Leishmania major, three of which are predicted to contain a functional PtdIns(3)P-binding site. The FYVE domain of one of these proteins, LmFYVE-1, bound PtdIns(3)P in liposome-binding assays and targeted GFP to acidified late endosomes/lysosomes in mammalian cells. The high-resolution solution structure of its N-terminal FYVE domain (LmFYVE-1[1-79]) was solved by nuclear magnetic resonance. Functionally significant clusters of residues of the LmFYVE-1 domain involved in PtdIns(3)P binding and dependence on low pH for tight binding were identified. This structure is the first trypanosomatid membrane trafficking protein to be determined and has been refined to high precision and accuracy using residual dipolar couplings.  相似文献   

16.
The FYVE domain associates with phosphatidylinositol 3‐phosphate [PtdIns(3)P] in membranes of early endosomes and penetrates bilayers. Here, we detail principles of membrane anchoring and show that the FYVE domain insertion into PtdIns(3)P‐enriched membranes and membrane‐mimetics is substantially increased in acidic conditions. The EEA1 FYVE domain binds to POPC/POPE/PtdIns(3)P vesicles with a Kd of 49 nM at pH 6.0, however associates ~24 fold weaker at pH 8.0. The decrease in the affinity is primarily due to much faster dissociation of the protein from the bilayers in basic media. Lowering the pH enhances the interaction of the Hrs, RUFY1, Vps27p and WDFY1 FYVE domains with PtdIns(3)P‐containing membranes in vitro and in vivo, indicating that pH‐dependency is a general function of the FYVE finger family. The PtdIns(3)P binding and membrane insertion of the FYVE domain is modulated by the two adjacent His residues of the R(R/K)HHCRXCG signature motif. Mutation of either His residue abolishes the pH‐sensitivity. Both protonation of the His residues and nonspecific electrostatic contacts stabilize the FYVE domain in the lipid‐bound form, promoting its penetration and increasing the membrane residence time. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Most disease causing mycobacteria are intramacrophage pathogens which replicate within nonacidified phagosomes that can interact with the early endosomal network but fail to mature to a phagolysosome. The mycobacterial phagosome retain some proteins required for fusion with endocytic vesicles including Rab5 but lack others such as early endosomal autoantigen 1 (EEA1). As the membrane lipid phosphatidylinositol 3-phosphate (PtdIns-3-P) is required for EEA1 membrane association and phagosome maturation, it may be a potential target of pathogenic mycobacteria. To test this hypothesis, macrophage cellular levels of PtdIns-3-P were altered by retroviral introduction of the type III Phosphoinositide 3-Kinase (VPS34) and the PtdIns-3-P phosphatase myotubularin 1 (MTM1). By utilizing the PtdIns-3-P-specific probes FYVE and PX coupled to EGFP (EGFP-2-FYVE and EGFP-PX, respectively), the expression of PtdIns-3-P on the mycobacterial phagosome was addressed. All phagosomes containing viable Mycobacterium avium stained positive for EGFP-2-FYVE and EGFP-PX despite obvious differences in PtdIns-3-P concentrations in cells expressing MTM1 or VPS34. Altering PtdIns-3-P cellular concentrations did not affect trafficking of live bacilli. However, a significant increase in the transport of killed bacilli to a late endosomal/lysosomal compartment was observed in VPS34-compared to MTM1-transduced macrophages. Therefore, although overexpression of PdtIns-3-P in macrophages can facilitate phagosome maturation, its effect on phagosomes containing viable M. avium was negligible.  相似文献   

18.
Kinetically distinct steps can be distinguished in the secretory response from neuroendocrine cells with slow ATP-dependent priming steps preceding the triggering of exocytosis by Ca(2+). One of these priming steps involves the maintenance of phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) through lipid kinases and is responsible for at least 70% of the ATP-dependent secretion observed in digitonin-permeabilized chromaffin cells. PtdIns-4,5-P(2) is usually thought to reside on the plasma membrane. However, because phosphatidylinositol 4-kinase is an integral chromaffin granule membrane protein, PtdIns-4,5-P(2) important in exocytosis may reside on the chromaffin granule membrane. In the present study we have investigated the localization of PtdIns-4,5-P(2) that is involved in exocytosis by transiently expressing in chromaffin cells a pleckstrin homology (PH) domain that specifically binds PtdIns-4, 5-P(2) and is fused to green fluorescent protein (GFP). The PH-GFP protein predominantly associated with the plasma membrane in chromaffin cells without any detectable association with chromaffin granules. Rhodamine-neomycin, which also binds to PtdIns-4,5-P(2), showed a similar subcellular localization. The transiently expressed PH-GFP inhibited exocytosis as measured by both biochemical and electrophysiological techniques. The results indicate that the inhibition was at a step after Ca(2+) entry and suggest that plasma membrane PtdIns-4,5-P(2) is important for exocytosis. Expression of PH-GFP also reduced calcium currents, raising the possibility that PtdIns-4,5-P(2) in some manner alters calcium channel function in chromaffin cells.  相似文献   

19.
Teleman AA  Strigini M  Cohen SM 《Cell》2001,105(5):559-562
Phosphatidylinositol 3-phosphate directs the endosomal localization of regulatory proteins by binding to FYVE and PX domains. New structures of these domains complexed with the phosphoinositide headgroup show how interactions with phosphate and hydroxyl groups differentiate this lipid from all others.  相似文献   

20.
This study systematically analyzed the structural and mechanistic basis of the regulation of subcellular membrane targeting using FYVE domains as a model. FYVE domains, which mediate the recruitment of signaling and membrane-trafficking proteins to phosphatidylinositol 3-phosphate-containing endosomes, exhibit distinct subcellular localization despite minor structural variations within the family. Biophysical measurements, cellular imaging, and computational analysis of various FYVE domains showed that the introduction of a single cationic residue and a hydrophobic loop into the membrane binding region of the FYVE domains dramatically enhanced their membrane interactions. The results indicated that there is a threshold affinity for endosomal localization and that endosomal targeting of FYVE domains is sensitive to small changes in membrane affinity about this threshold. Collectively these studies provide new insight into how subcellular localization of FYVE domains and other membrane targeting domains can be regulated by minimal structural and environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号