首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Hairy root cultures of Lithospermum canescens were established using three strains of Agrobacterium rhizogenes: ATCC 15834, LBA 9402 and NCIB 8196. Eight lines resulting from infection with A. rhizogenes ATCC 15834 demonstrated sufficient biomass increase and were submitted to further investigations. The contents of acetylshikonin (ACS) and isobutyrylshikonin (IBS) in transformed hairy roots made up ca. 10% of those observed in natural roots of L. canescens (24.35 and 14.48 mg g−1 DW, respectively). One line, Lc1-D, produced the largest amounts of ACS (2.72 mg g−1 DW) and IBS (0.307 mg g−1 DW). Traces of pyrrolizidine alkaloids (PA), canescine and canescenine, were found in all lines of transformed hairy roots.  相似文献   

2.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

3.
Transformed root cultures of Coluria geoides Ledeb. were established with the use of Agrobacterium rhizogenes LBA 9402. Both normal and transformed root cultures were investigated for their growth and yield of eugenol. Normal roots were grown in B5 medium-supplemented with 0.2 mg l-1 of kinetin and 0.2 mg l-1 of 1-naphthaleneacetic acid (NAA). Hairy roots grew well in hormone-free B5 medium. Both hairy roots and normal roots produced glycosidic bound eugenol. as with the roots of intact plants, eugenol was the main component of the total essential oils obtained from hairy root and normal root cultures. The yield of eugenol from normal roots was 0.1–0.25% of the dry wt. and depended on the development stage of the culture. Yield of eugenol from hairy roots was 0.08–0.1% of the dry wt. NAA modified the hairy root morphology and influenced the yield of eugenol.Abbreviations NAA 1-naphthaleneacetic acid  相似文献   

4.
The formation of 5 hairy root lines of Leontopodium alpinum was induced by infection of sterile plants with Agrobacterium rhizogenes. The transformed roots were grown as batch cultures in a phytohormone-free modified Murashige & Skoog medium. A time-course experiment with the most productive line showed that a culture period of 6 weeks was optimum for biomass production yielding a 70-fold increase in fresh weight. A 70% enhancement of anthocyanin formation could be induced by addition of benzyladenine (to a final concentration of 0.5 mg l-1) to the culture medium 14 days before harvest. The presence in the cultures of chlorogenic acid as well as other hydroxycinnamic acid esters was confirmed by TLC. An essential oil (ca. 0.6%) was separated from the hairy roots by steam distillation, a high variability in oil yield being observed between the different lines. GC analyses showed the oils to be complex mixtures of > 30 compounds, with 2 of these consistently representing ca. 60% of the oils. The essential oils isolated from hairy roots were found to be qualitatively similar to the natural root oil, although quantitative differences in oil components were apparent. Oil yields could be increased by growing roots in the absence of light.Abbreviations MS Murashige & Skoog - BAP benzylaminopurine  相似文献   

5.
Summary Segments of the TL-DNA of the agropine type Ri plasmid pRi 1855 encompassing single and groups of open-reading frames were cloned in the Ti plasmid-derived binary vector system Bin 19. Leaf disc infections on Nicotiana tabacum led to transformed plants, some of which showed typical hairy root phenotypes, such as the wrinkled leaf morphology, excessive and partially non geotropic root systems and the ability of leaf explants to differentiate roots in a hormone-free culture medium. Particularly interestingly, most of these traits were shown by plants transformed with a TL-DNA segment encompassing the single ORF 11, corresponding to the rolB locus. Hairy root can be induced by this latter T-DNA segment on wounded stems of tobacco plants; hairy root induction on carrot discs requires, on the contrary, a more complex complement of TL-DNA genes.Abbreviations YMB yeast mannitol broth - MS Murashige and Skoog medium - 6-BAP 6-benzylaminopurine - NAA naphthalene acetic acid - Km kanamycin - Cb carbenicillin  相似文献   

6.
7.
Picrorhiza kurroa Royle ex Benth. is an endangered plant producing various compounds of medicinal importance. Hairy roots of P. kurroa were obtained following cocultivation of shoot tip explants with Agrobacterium rhizogenes strains A 4 and PAT 405. Bacterial strain A 4 appeared to be better than the strain PAT 405 in terms of both growth of respective hairy root cultures and secondary metabolite production. The optimal growth of both the hairy root cultures occurred on half-strength semisolid medium with 3% sucrose. Picrotin and picrotoxinin from the roots of wild type field grown plants were compared with 8-week-old hairy root cultures induced by the A 4 and PAT 405 strains of A. rhizogenes. Picrotin and picrotoxinin content were evaluated in hairy root cultures as well as roots of field grown plant of P. kurroa. In terms of the production of picrotin and picrotoxinin, the A 4 induced hairy roots appeared to be a better performer than the PAT 405 induced hairy root cultures. The picrotin and picrotoxinin content was highest in 8-week-old A 4 induced hairy roots (8.8 μg/g DW and 47.1 μg/g DW, respectively). Rapid growth of the hairy roots of P. kurroa with in vitro secondary metabolite production potential may offer an attractive alternative to the exploitation of this endangered plant species.  相似文献   

8.
An efficient transformation system for the medicinal and aromatic plant, Pogostemon cablin Benth was developed by using agropine-type Agrobacterium rhizogenes ATCC15834. Hairy roots formed directly from the cut edges of leaf explants or via callus stage 8 days after inoculation with the bacterium. The highest frequency of leaf explant transformation by Agrobacterium rhizogenes ATCC15834 was about 80% after infection for 25 days. Hairy roots grew rapidly on plant growth regulators (PGRs)-free Murashige and Skoog (MS) or 6,7-V medium and had characteristics of transformed roots such as fast growth and high lateral branching. The PCR amplification showed that rol genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. The hairy root line, PL6, grew very slowly in the first 8 days, then grew very quickly between day 8 and day 24. The optimum medium for callus induction of hairy roots consisted of 2.0 mg l−1 benzyladenine (BA) and 0.1 mg/l α-naphthaleneacetic acid (NAA); while optimum medium for adventitious shoot regeneration from these cultures consisted of 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Adventitious shoots could be rooted on 1/2MS. Southern blot analysis confirmed that rol genes of TL-DNA of Ri plasmid was integrated with at least three copies into the genome of hairy roots- regenerated P. cablin plants. The results presented provide a solid foundation for production of patchouli essential oil from hairy roots or its regenerated plants and also provide possibilities for utilization of artifical polyploidization or chemical mutation of hairy roots for improving germplasm and breeding of a new cultivar of P. cablin.  相似文献   

9.
Using different explants of in vitro seed grown Scutellaria baicalensis Georgi plantlets, hairy roots were induced following inoculation of Agrobacterium rhizogenes strains A4GUS, R1000 LBA 9402 and ATCC11325. The A4GUS proved to be more competent than other strains and the highest transformation rates were observed in cotyledonary leaf explant (42.6 %). The transformed roots appeared after 15–20 d of incubation on hormone free Murashige and Skoog medium. Growth of hairy roots was assessed on the basis of total root elongation, lateral root density and biomass accumulation. Maximum growth rate was recorded in root:medium ratio 1:100 (m/v). Hairy root lines were further established in Gamborg B5 medium and the biomass increase was maximum from 15 to 30 d. PCR, Southern hybridization and RT-PCR confirmed integration and expression of left and right termini-linked Ri T-DNA fragment of the Ri plasmid from A4GUS into the genome of Scutellaria baicalensis hairy roots. GUS assay was also performed for further integration and expression. All the clones showed higher growth rate them non-transformed root and accumulated considerable amounts of the root-specific flavonoids. Baicalin content was 14.1–30.0 % of dry root mass which was significantly higher then that of control field grown roots (18 %). The wogonin content varies from 0.08 to 0.18 % among the hairy root clones which was also higher than in non-transformed roots (0.07 %).  相似文献   

10.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

11.
Hairy roots of Rhamnus fallax Boiss. were induced using Agrobacterium rhizogenes strain A4M70GUS. The culture established on Woody plant media (WPM) showed a typical hairy root phenotype: rapid growth, reduced apical dominance and root plagiotropism. Seven clones of R. fallax were selected on the basis of their differences in colour and the root branching. The growth of hairy root culture, measured through gain in fresh mass, was done under 16-h photoperiod or in the dark. An increase in anthraquinone (AQ) content was obtained in clones with yellow and less branched roots, like clone 1 [16.43 mg g−1(d.m.)] and clone 7 [14.21 mg g−1(d.m.)], compared with other analysed transformed and non-transformed tissue. This study presents the first report of successful transformation of any species from family Rhamnaceae by A. rhizogenes and analysis of AQ production in transformed tissue.  相似文献   

12.
Summary Shoot regeneration in hairy root cultures of Solanum khasianum Clarke influences root growth, solasodine production. and permeabilization of solasodine into the medium. These parameters are dependent on exogenously supplied auxin and cytokinin: the effect being both concentration-and clone-dependent. Hairy root cultures with no shoot regeneration showed high permeabilization of solasodine into the medium by the sixth week of incubation, suggesting the medium acts as a sink for the solasodine synthesized by the roots. Solasodine in the culture medium was toxic to the transformed roots and caused browning of root tips. In a separate set of experiments, the hairy root cultures showed regeneration of approximately 50–70 mm long shoots after treatment with indole-3-acetic acid and kinetin. These hairy root cultures had inereased levels of solasodine production, compared to cultures without shoot regeneration. The plantlets formed in the hairy root cultures accumulated some of the solasodine, thereby reducing its permcabilization into the medium. Transport of solasodine from root to shoot reduced the toxic effect of solasodine in the root zone and extended the exponential growth phase by 8-10d.  相似文献   

13.
Transformed root cultures of Anethum graveolens were induced by inoculation of aseptically grown seedlings with Agrobacterium rhizogenes carrying plasmid pRi 1855. The main component of the essential oils from the fruits and from the roots of the parent plant was carvone, whereas -phellandrene and apiole were dominant in the oil from, respectively, the aerial parts and the hairy roots. The essential oils from the fruits, aerial parts and roots of the parent plant were at 2%, 0.3% and 0.06% (v/w), respectively, but only 0.02% (v/w) in the hairy root cultures. Growth of the hairy root cultures reached 600 mg dry wt/50 ml medium after 50 days. The essential oil composition did not change significantly during their growth.  相似文献   

14.
Hairy root cultures of Echinacea, one of the most important medicinal plants in the US, represent a valuable alternative to field cultivation for the production of bioactive secondary metabolites. In this study, the three most economically important species of Echinacea (Echinacea purpurea, Echinacea pallida, and Echinacea angustifolia) were readily transformed with two strains of Agrobacterium that produce the hairy root phenotype. Transformed roots of all three species exhibited consistent accelerated growth and increased levels of alkamide production. Optimization of the culture of Echinacea hairy roots was implemented to enhance both growth and alkamide production concomitantly. The use of half-strength Gamborg’s B5 medium supplemented with 3.0% sucrose was twice as effective in maintaining hairy root production than any other media tested. The addition of indolebutyric acid increased the growth rate of roots by as much as 14-fold. Alkamide production increased severalfold in response to the addition of the elicitor, jasmonic acid, but did not respond to the addition of indolebutyric acid. Induced accumulation of the important bioactive compounds, alkamides 2 and 8, was observed both in transformed roots and in response to jasmonic acid treatments. The results of this study demonstrate the efficacy of hairy root cultures of Echinacea for the in vitro production of alkamides and establish guidelines for optimum yield.  相似文献   

15.
Transgenic hairy roots were induced from petiole and root segments of in vitro plant Aralia elata, a medicinal woody shrub, after co-cultivation with A. rhizogenes ATCC 15834. The percentage of putative hairy root induction from root segments was higher (26.7%) than petiole explants (10.0%). Hairy roots showed active production of lateral roots with vigorous elongation. Transgenic plants were regenerated from hairy roots via somatic embryogenesis. These plants had wrinkled leaves, short petioles and numerous lateral hairy roots. The RT-PCR analysis showed the expression of rol A, B, C, D, aux 1 and 2 genes differed between the transgenic lines. Endogenous IAA level was higher in transgenic than non-transgenic plants. Conclusively, transgenic hairy roots were developed for first time in A. elata and the transgenic hairy root lines showed distinct morphological growth pattern and gene expression.  相似文献   

16.
Hairy roots of mustard (Brassica juncea var. tsatsi) cv. "Paoye' were obtained from in vitro inoculation of reversely inserted petioles with Agrobacteriurn rhizogenes strain LBA9402 harbouring the agropine-type Ri plasmid (pRi1855). The root inducing rate was 100%. Transformed roots grew rapidly on hormone-free MS medium and showed typical hairy root phenotype. Transformed plantlets regenerated from hairy roots on MS medium supplemented with BA 8.0 mg/L and NAA 0.6 mg/L. Opine analysis evidenced the integration and expression of TR-DNA, PCR analysis and Southern hybridization confirmed the integration of TL-DNA including 862 bp rol B sequence in the transformed plants.  相似文献   

17.
Summary Ten transformed and two non-transformed root lines ofCatharanthus roseus were established. A systematic study of the growth kinetics and alkaloid content was performed over a culture cycle and showed significant differences between transformed and non-transformed cultures. Mean doubling times for transformed and normal root lines were 2.8 and 19.5 days, respectively. Alkaloid content in hairy roots was from two- to threefold higher than in the non-transformed tissues. The established transformed root lines produced a wide variety of indole alkaloids as can be observed from their complex thin layer chromatography patterns. A large quantity of serpentine was determined in two of the transformed root cultures. Alkaloid content, both quantitatively and qualitatively, has been stable in the hairy root cultures for more than 2 yr of subculturing.  相似文献   

18.
Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites fromPanax ginseng. P. ginseng hairy roots, transformed byRhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5 wm, but at aeration rates above 0.5 wm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy roots decreased with increases in the inoculum size.  相似文献   

19.
The T-DNA regions of three strains of Ri plasmids 1855, 8196, 2659 (agropine, mannopine and cucumopine type respectively) share two highly conserved regions flanking a non-homologous central part [1,2]. We have cloned segments of the cucumopine Ri plasmid 2659 T-DNA in the binary vector system Bin 19 and infected carrot discs with recombinant Agrobacterium strains. We show here that the central non-conserved region is crucial in hairy root induction as it is sufficient to induce rooting on the apical (auxin-rich) surface of carrot discs; in order to observe rooting on the basal (auxin-depleted) side of the discs, a longer T-DNA fragment, also encompassing part of the right conserved region, had to be utilized in conjunction with a Agrobacterium strain carrying aux genes. Differences of growth properties in culture are exhibited by roots transformed with different fragments of pRi 2659 T-DNA, although all transformed roots show the plagiotropic behaviour typical of hairy roots.  相似文献   

20.
ABSTRACT

Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号