首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsMultiple studies have demonstrated that mesenchymal stromal cells (MSC) can be utilized therapeutically for various congenital and acquired disorders. The involvement of MSC in the maintenance of skin homeostasis and their curative application for the treatment of skin wounds have also been documented. However, it is not known whether MSC can commit to cutaneous lineages, produce structural proteins essential for the skin integrity or be used for hereditary skin disordersMethodsTo address these questions, we conducted a comparative expression analysis between MSC and potentially adjacent cutaneous cells, fibroblasts and keratinocytes, with specific emphasis on extracellular matrix encoding and related genesResultsOur data demonstrated that MSC share many features with cutaneous fibroblasts. We also observed that under direct influence of cutaneous fibroblasts in vitro and fibroblast-derived matrix in vivo, MSC acquired a fibroblastic phenotype, suggesting that specific cell–cell interactions play a key regulatory role in the differentiation of MSC. Additionally, the observed fibroblastic transition of MSC was underlined by a significant up-regulation of several cutaneous-specific genes encoding lumican, decorin, type VII collagen, laminin and other structural proteins. As many of the identified genes have considerable therapeutic value for dermatologic afflictions, particularly type VII collagen, we evaluated further the therapeutic potential of congenic MSC in the skin of Col7a1-null mice recapitulating human recessive dystrophic epidermolysis bullosa (RDEB). Remarkably, MSC-derived type VII collagen was sufficient for restoration of the damaged dermal–epidermal junction and partial reversal of the RDEB phenotypeConclusionsCollectively, our results suggest that MSC may offer promising therapeutics for the treatment of RDEB and potentially other genodermatoses.  相似文献   

2.
Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT–loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72 h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT–loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p < 0.01) and IL-1β (p < 0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p < 0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.  相似文献   

3.
BackgroundThe delay of dermal burn wound healing caused by vascular disorders is a critical problem for many diabetic patients. Thymosin β4 (Tβ4), identified by subtractive cloning of endothelial cells on plastic versus basement membrane substrates, has been found to promote angiogenesis and dermal wound repair in rats, aged mice, and db/db diabetic mice. However, previous studies involving the role of Tβ4 in wound repair were limited to mechanical damage and dermal impairment. Thus, this study aimed to evaluate the improvement of healing of burn wounds by Tβ4 in relation to advanced glycation end products (AGE), which are pathological factors in diabetes.MethodsWe adapted a dermal burn wound in vivo model in which the dorsal skin of db/db mice was exposed for 10 s to 100 °C heated water to produce a deep second-degree burn 10 mm in diameter. Five mg/kg of Tβ4 was then injected intradermally near the burn wound twice a week for 2 weeks.ResultsAfter treatment, Tβ4 improved wound healing markers such as wound closure, granulation, and vascularization. Interestingly, Tβ4 reduced levels of receptor of AGE (RAGE) during the wound healing period.Conclusions4 exerts effects to remedy burn wounds via downregulation of RAGE.General significanceOur results suggest the potential importance of Tβ4 as a new therapy for impaired burn wound healing that is associated with diabetes.  相似文献   

4.
Hyperglycemia is one of the major causes of suppressed angiogenesis and impaired wound healing leading to chronic wounds. Nesfatin-1 a novel peptide was reported to have antioxidant and anti-apoptotic properties. This study is aimed to investigate the potential healing-promoting effects of nesfatin-1 in non-diabetic or diabetic rats with surgical wounds. In male Sprague-Dawley rats, hyperglycemia was induced by intraperitoneal (ip) injection of streptozotocin (55 mg/kg). Under anesthesia, dorsum skin tissues of normoglycemic (n = 16) and hyperglycemic rats were excised (2 × 2 cm, full-thickness), while control rats (n = 16) had neither hyperglycemia nor wounds. Half of the rats in each group were treated ip with saline, while the others were treated with nesfatin-1 (2 μg/kg/day) for 3 days until they were decapitated. Plasma interleukin-1-beta (IL-1β), transforming growth factor-beta (TGF-β-1), IL–6 levels, and dermal tissue malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) and caspase-3 activity were measured. For histological examination, paraffin sections were stained with hematoxylin-eosin or Masson’s trichrome and immunohistochemistry for vascular endothelial growth factor (VEGF) was applied. ANOVA and Student’s t-tests were used for statistical analysis. Compared to control rats, skin MPO activity, MDA and caspase-3 levels were increased similarly in saline-treated normo- and hyperglycemic rats. Nesfatin-1 depressed MDA, caspase-3, MPO activity and IL-1β with concomitant elevations in dermal GSH and plasma TGF-β-1 levels. Histopathological examination revealed regeneration of epidermis, regular arrangement of collagen fibers in the dermis and a decrease in VEGF immunoreactivity in the epidermal keratinocytes of nesfatin-1-treated groups. Nesfatin-1 improved surgical wound healing in both normo- and hyperglycemic rats via the suppression of neutrophil recruitment, apoptosis and VEGF activation.  相似文献   

5.
Type VII collagen (Col7) is the major component of anchoring fibrils and very important for skin integrity. This is emphasized by the Col7 related skin blistering diseases dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. Structural data that provides insights into the interaction network of Col7 and thus providing a basis for a better understanding of the pathogenesis of the diseases is missing.We proved that the von-Willebrand-factor A like domain 2 (vWFA2) of Col7 is responsible for type I collagen binding. The interaction has a KD value of 90 μM as determined by SPR and is enthalpy driven as derived from the van’t Hoff equation. Furthermore, a hitherto unknown interaction of this domain with type IV collagen was identified. The interaction of vWFA2 with type I collagen is sensitive to the presence of magnesium ions, however, vWFA2 does not contain a magnesium binding site thus magnesium must bind to type I collagen.A lysine residue has been identified to be crucial for type I collagen binding. This allowed localization of the binding site. Mutational analysis suggests different interaction mechanisms in different species and that these interactions might be of covalent nature.  相似文献   

6.
The human COL17A1 gene encodes type XVII collagen (also known as the 180-kDa bullous pemphigoid antigen), an integral component of hemidesmosomes, attachment complexes providing integrity to the dermal–epidermal junction. Zebrafish, a useful model system to study skin development, displays fully developed hemidesmosomes at approximately 5 days post-fertilization (dpf). We have identified two COL17A1 orthologues in the zebrafish genome, col17a1a and col17a1b, which are expressed in the skin and the neural system, respectively. The proteins coded by these genes have structural module organizations homologous to the human type XVII collagen. “Knock-down” of the expression of col17a1a with a specific morpholino targeting the 5′ UTR of the gene resulted in a blistering phenotype and in perturbations in the basement membrane zone. “Knock-down” of col17a1b expression resulted in ablation or in marked reduction of neuromasts in the lateral line. Thus, zebrafish has two COL17A1 orthologues which may have evolved tissue-specific functions during vertebrate development. Collectively, zebrafish provides a model system to study the molecular aspects of skin development and offers insights into the corresponding human diseases.  相似文献   

7.
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.  相似文献   

8.
Arginine supplementation has been identified as advantageous in experimental wound healing. However, the mechanisms underlying this beneficial effect in tissue repair remain unresolved. Animal studies suggest that the beneficial role of arginine supplementation is mediated, at least in part through NO. The latter component mediates processes involved in tissue repair, including angiogenesis, epithelialization and collagen formation. This prospective study is performed to investigate arginine metabolism in acute surgical wounds in man. Expression of enzymes, known to be involved in arginine metabolism, was studied in donor sites of skin grafts of 10 hospitalized patients undergoing skin transplantation. Plasma and wound fluid levels of arginine metabolites (ornithine, citrulline, nitrate and nitrite = NOx) were measured using High Performance Liquid Chromatography. Expression of iNOS, eNOS, arginase-1 and arginase-2 was studied by immunohistochemistry in paraffin sections of skin tissue. Arginase-1 concentration was measured in plasma and wound fluid using ELISA. Arginase-2 was determined using Western blot analysis. We observed increased levels of citrulline, ornithine, NOx and arginase-1 in wound fluid when compared with plasma. Arginase-2 was expressed in both plasma and wound fluid and seemed higher in plasma. iNOS was expressed by neutrophils, macrophages, fibroblasts, keratinocytes and endothelial cells upon wounding, whereas eNOS reactivity was observed in endothelial cells and fibroblasts. Arginase-1 was expressed in neutrophils post-wounding, while arginase-2 staining was observed in endothelial cells, keratinocytes, fibroblasts, macrophages and neutrophils. For the first time, human data support previous animal studies suggesting arginine metabolism for an NO- as well as arginase-mediated reparation of injured skin.  相似文献   

9.
《Process Biochemistry》2007,42(5):884-888
Polysaccharide obtained from Anacardium occidentale L. gum was used for trypsin entrapment using cellulose (gaze) as a support and this preparation was applied as cutaneous wound healing. Trypsin release in vitro and the influence of pH and temperature on activity, stability and storage time of entrapped enzyme were evaluated. The preparation showed that it was still capable to release enzyme even after 48 h. Entrapped enzyme presented an optimal pH and temperature of 8.6 and 55 °C, respectively. Also, it was stable at high temperature (45 °C for 60 min) and wide range of pH, retaining 80% of its initial activity when stored for 28 days at 25 °C. Histopathological analysis of mice skin wound healing under the entrapped trypsin preparation treatment showed an acceleration of fibroblast proliferation, neovascularization of granulation tissue and stimulating effect on the epithelium formation compared to the skin wound under the treatment using preparations without trypsin. These results demonstrate that the trypsin–polysaccharide–cellulose preparation could be used in cutaneous dressing applications for wound healing.  相似文献   

10.
Changes in extracellular matrix (ECM) are one of many components that contribute to impaired wound healing in aging. This study examined the effect of age on the glycosaminoglycan hyaluronan (HA) in normal and wounded dermis from young (4–6 month-old) and aged (22–24 month-old) mice. HA content and size were similar in the normal dermis of young and aged mice. Dermal explants labeled with [3H]-glucosamine showed decreased generation of smaller forms of HA in aged explants relative to young explants. Aged mice exhibited delayed wound repair compared with young mice with the greatest differential at 5 days. Expression of hyaluronan synthase (HAS) 2 and 3, and hyaluronidase (HYAL) 1–3 mRNA in wounds of young and aged mice was similar. There was a trend toward a decreased HYAL protein expression in aged wound dermis, which was accompanied by changes in detectable HYAL activity. Total HA content was similar in young and aged wound dermis. There was significantly less HA in the lower MW range (~ 250 kDa and smaller) in 5-day wound dermis, but not in 9-day wound dermis, from aged mice relative to young mice. We propose that decreased cleavage of HA is an additional component of impaired dermal wound healing in aging.  相似文献   

11.
12.
Ascorbic acid (AA) is essential for collagen biosynthesis as a cofactor for prolyl and lysyl hydroxylase and as a stimulus for collagen gene expression. Many studies have evaluated the relationship between AA and collagen expression in short- and long-term effects on cells after a single administration of AA into the culture medium. However, no such study has monitored in detail the stability of AA in medium or the alterations of intracellular AA levels during a protracted interval. Therefore, we examined here intracellular AA levels and stability throughout its exposure to human skin fibroblasts in vitro. Moreover, we determined the effects on type 1 and type 4 collagen and sodium-dependent vitamin C transporter (SVCT) gene expression when medium containing 100 μM AA was replaced every 24 h for 5 days to avoid depletion of AA. Throughout this long-term culture, intracellular AA levels remained constant; the expression of type 1 and type 4 collagens and SVCT2 mRNA was enhanced, and type 1 procollagen synthesis increased. Thus, these results indicate that human skin fibroblasts exposed to AA over time had rising levels of type 1/type 4 collagens and SVCT2 mRNA expression and type 1 procollagen synthesis.  相似文献   

13.
《Cytokine》2013,63(3):360-368
BackgroundInterleukin (IL)-19, a member of the IL-10 cytokine family, is involved in keratinocyte proliferation in psoriasis.ObjectivesWe investigated the role of IL-19 in the wound-healing process in vivo and in vitro.MethodsTwo full-thickness circular wounds (4 mm in diameter) were punched into the skin of BALB/C mice. IL-19 and keratinocyte growth factor (KGF) mRNA in wounded skin were determined using real-time PCR. The wounds were treated with PBS, vehicle, IL-19 (400 ng/mL), or IL-20 (400 ng/mL) (n = 6 in each group) twice daily and the percentage of wound healing was measured daily for 7 days. In vitro, human skin fibroblast CCD966-SK cells and keratinocyte HaCaT cells were treated with IL-19 or KGF. Cell proliferation and migration were determined using bromodeoxyuridine (BrdU) and transwell assays, respectively. The expression of IL-19 and KGF mRNA was also analyzed.ResultsIn wounded mouse skin, IL-19 mRNA was upregulated at 12 h, and KGF at 24 h after the injury. Both increases in gene expression declined 72 h after the skin had been wounded. The percentage of wound healing in IL-19-treated mice was higher than in control mice. In vitro, IL-19 upregulated KGF expression in the CCD966-SK cells; IL-19 was upregulated in KGF-treated HaCaT cells. KGF but not IL-19 promoted HaCaT cell proliferation. However, IL-19 significantly increased the migration of HaCaT cells. HaCaT cells treated with the cultured supernatants of IL-19-stimulated CCD966-SK cells showed significantly more proliferation than in controls.ConclusionsIL-19 is important for cutaneous wound healing because it upregulates KGF expression.  相似文献   

14.
Chin SP  Poey AC  Wong CY  Chang SK  Tan CS  Ng MT  Chew KH  Lam KH  Cheong SK 《Cytotherapy》2011,13(7):814-821
Background aimsMesenchymal stromal cells (MSC) may improve cardiac function following myocardial infarction. MSC can differentiate into cardiomyocytes and endothelial cells while exerting additional paracrine effects. There is limited information regarding the efficacy of route for MSC treatment of severe dilated cardiomyopathy (DCM). The aim of this study was to demonstrate the clinical safety, feasibility and efficacy of direct intramyocardial and intracoronary administration of autologous bone marrow-derived MSC treatment for no-option patients with chronic severe refractory DCM.MethodsTen symptomatic patients with DCM and refractory cardiac function, despite maximum medical therapy, were selected. Five had ischemic DCM deemed unlikely to benefit from revascularization alone and underwent bypass operations with concurrent intramyocardial MSC injection (group A). Two patients had previous revascularization and three had non-ischemic DCM and received intracoronary MSC injection (group B).ResultsGroup A and B patients received 0.5–1.0 × 106 and 2.0–3.0 × 106 MSC/kg body weight, respectively. All patients remained alive at 1 year. There were significant improvements from baseline to 6 and 12 months in left ventricular ejection fraction and other left ventricular parameters. Scar reduction was noted in six patients by 12 months.ConclusionsAutologous bone marrow MSC treatment is safe and feasible for treating chronic severe refractory DCM effectively, via intracoronary or direct intramyocardial administration at prescribed doses.  相似文献   

15.
AimsTo investigate the in vivo effect of glucosamine on articular cartilage in osteoarthritis (OA), we evaluated serum biomarkers such as CTX-II (type II collagen degradation) and CPII (type II collagen synthesis) as well as histopathological changes (Mankin score, toluidine blue staining of proteoglycans in an experimental OA model using rats.Main methodsOA was surgically induced in the knee joint by anterior cruciate ligament transection (ACLT) in rats. Animals were divided into three groups: sham-operated group (Sham), ACLT group without GlcN administration (? GlcN) and ACLT group with oral administration of glucosamine hydrochloride (+ GlcN; 1000 mg/kg/day for 56 days).Key findingsACLT induced macroscopic erosive changes on the surfaces of articular cartilage and histological damages such as increase of Mankin score. Of note, glucosamine administration substantially suppressed the macroscopic changes, although the effect on Mankin score was not significant. In addition, serum CTX-II levels were elevated in ?GlcN group compared to that in Sham group after the operation. Of importance, the increase of CTX-II was significantly suppressed by GlcN administration. Moreover, serum CP-II levels were substantially increased in + GlcN group compared to those in Sham and ? GlcN groups after the operation.SignificanceGlcN has a potential to exert a chondroprotective action on OA by inhibiting type II collagen degradation and enhancing type II collagen synthesis in the articular cartilage.  相似文献   

16.
Laminar shear stress (LSS) due to blood flow contributes to the maintenance of endothelial health by multiple mechanisms including promotion of wound healing. The present study examined the hypothesis that the induction of water channel aquaporin 1 (AQP1) expression by LSS might be functionally associated with endothelial wound healing. When human umbilical vein endothelial cells were exposed to LSS at 12 dyn cm?2 for 24 h, significant increases in AQP1 expression were observed at the mRNA and protein levels as compared with static control. In the in vitro scratch wound healing assay, LSS treatments before and after wound creation enhanced endothelial wound healing and this effect was significantly attenuated by selective suppression of AQP1 expression using small interfering RNA. Ectopic expression of AQP1 enhanced wound healing in the absence of LSS. This study demonstrated that LSS stimulates the endothelial expression of AQP1 that plays a role in wound healing.  相似文献   

17.
18.
Background aimsThe development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horsesMethodsSixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injectionResultsMSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSCConclusionsThe healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.  相似文献   

19.
Type I collagen from outer skin of Sepia pharaonis was extracted and partially characterized. Yield of Acid Soluble Collagen (ASC) and Pepsin Soluble Collagen (PSC) were calculated as 1.66% and 3.93% and the total protein content of ASC and PSC were found as 18.4% and 48.6%. FT-IR spectrum of ASC and PSC recorded 12 and 14 peaks, respectively. 1H NMR spectrum of ASC showed singlets at 1.23 ppm, 3.1 ppm, 3.55 ppm and 3.7 ppm and PSC at 1.23 ppm and 2.08 ppm. The molecular weight for ASC was calculated as 102 kDa and for PSC as 110, 108 and 102 kDa through SDS-PAGE. Differential Scanning Calorimetry (DSC) results supported that PSC withstand high thermal stability (82.85 °C) than ASC (73.13 °C). Higher denaturation temperature with high molecular weight well support the property of type I collagen from skin of S. pharaonis and it could be used as another potent source for the extraction of collagen.  相似文献   

20.
The risk of skin cancer in patients with alopecia areata (AA) is unknown. While the risk of skin cancer in chronic inflammatory alopecias may be elevated, AA shares many characteristics with vitiligo, an autoimmune illness associated with decreased risk of melanoma and non-melanoma skin cancers. In this retrospective cohort study, we determined the risk of developing skin cancer among patients with AA in a validated cohort relative to matched controls at two tertiary care hospitals in Massachusetts. There was a significantly decreased risk of NMSC in AA patients than controls (OR = 0.63, 95% CI = 0.48–0.81). There was a trend towards a protective effect of AA associated with melanoma (OR = 0.65, 95% CI = 0.39–1.09). There was no difference in anatomic distribution of skin cancer between patients with AA and controls. Our study demonstrates a decreased risk of nonmelanoma skin cancer and a trend towards reduced risk of melanoma in patients with AA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号