首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss.  相似文献   

2.
Loss of mechanical stress or unloading causes disuse osteoporosis that leads to fractures and deteriorates body function and affects mortality rate in aged population. This bone loss is due to reduction in osteoblastic bone formation and increase in osteoclastic bone resorption. MuRF1 is a muscle RING finger protein which is involved in muscle wasting and its expression is enhanced in the muscle of mice subjected to disuse condition such as hind limb unloading (HU). However, whether MuRF1 is involved in bone loss due to unloading is not known. We therefore examined the effects of MuRF1 deficiency on unloading-induced bone loss. We conducted hind limb unloading of MuRF1 KO mice and wild-type control mice. Unloading induced about 60% reduction in cancellous bone volume (BV/TV) in WT mice. In contrast, MuRF1 deficiency suppressed unloading-induced cancellous bone loss. The cortical bone mass was also reduced by unloading in WT mice. In contrast, MuRF1 deficiency suppressed this reduction in cortical bone mass. To understand whether the effects of MuRF1 deficiency suppress bone loss is on the side of bone formation or bone resorption, histomorphometry was conducted. Unloading reduced bone osteoblastic formation rate (BFR) in WT. In contrast, MuRF1 deficiency suppressed this reduction. Regarding bone resorption, unloading increased osteoclast number in WT. In contrast, MURF1 deficiency suppressed this osteoclast increase. These data indicated that the ring finger protein, MURF1 is involved in disuse-induced bone loss in both of the two major bone remodeling activities, osteoblastic bone formation and osteoclastic bone resorption.  相似文献   

3.
Bone is maintained by continuous bone formation by osteoblasts provided by proliferation and differentiation of osteoprogenitors. Parathyroid hormone (PTH) activates bone formation, but because of the complexity of cells in the osteoblast lineage, how these osteoprogenitors are regulated by PTH in vivo is incompletely understood. To elucidate how signals by PTH in differentiated osteoblasts regulate osteoprogenitors in vivo, we conducted bone marrow ablation using Col1a1‐constitutively active PTH/PTHrP receptor (caPPR) transgenic mice. These mice express caPPR specifically in osteoblasts by using 2.3 kb Col1a1 promoter and showed higher trabecular bone volume under steady‐state conditions. In contrast, after bone marrow ablation, stromal cells recruited from bone surface extensively proliferated in the marrow cavity in transgenic mice, compared to limited proliferation in wild‐type mice. Whereas de novo bone formation was restricted to the ablated area in wild‐type mice, the entire marrow cavity, including not only ablated area but also outside the ablated area, was filled with newly formed bone in transgenic mice. Bone mineral density was significantly increased after ablation in transgenic mice. Bone marrow cell culture in osteogenic medium revealed that alkaline phosphatase‐positive area was markedly increased in the cells obtained from transgenic mice. Furthermore, mRNA expression of Wnt‐signaling molecules such as LRP5, Wnt7b, and Wnt10b were upregulated after marrow ablation in bone marrow cells of transgenic mice. These results indicate that constitutive activation of PTH/PTHrP receptor in differentiated osteoblasts enhances bone marrow ablation‐induced recruitment, proliferation, and differentiation of osteoprogenitors. J. Cell. Physiol. 227: 408–415, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Osteoporosis is one of the major health problems in our modern world. Especially, disuse (unloading) osteoporosis occurs commonly in bedridden patients, a population that is rapidly increasing due to aging-associated diseases. However, the mechanisms underlying such unloading-induced pathological bone loss have not yet been fully understood. Since sympathetic nervous system could control bone mass, we examined whether unloading-induced bone loss is controlled by sympathetic nervous tone. Treatment with beta-blocker, propranolol, suppressed the unloading-induced reduction in bone mass. Conversely, beta-agonist, isoproterenol, reduced bone mass in loaded mice, and under such conditions, unloading no longer further reduced bone mass. Analyses on the cellular bases indicated that unloading-induced reduction in the levels of osteoblastic cell activities, including mineral apposition rate, mineralizing surface, and bone formation rate, was suppressed by propranolol treatment and that isoproterenol-induced reduction in these levels of bone formation parameters was no longer suppressed by unloading. Unloading-induced reduction in the levels of mineralized nodule formation in bone marrow cell cultures was suppressed by propranolol treatment in vivo. In addition, loss of a half-dosage in the dopamine beta-hydroxylase gene suppressed the unloading-induced bone loss and reduction in mineralized nodule formation. Unloading-induced increase in the levels of osteoclastic activities such as osteoclast number and surface as well as urinary deoxypyridinoline was all suppressed by the treatment with propranolol. These observations indicated that sympathetic nervous tone mediates unloading-induced bone loss through suppression of bone formation by osteoblasts and enhancement of resorption by osteoclasts.  相似文献   

5.
Mechanosensing is one of the crucial components of the biological events. In bone, as observed in unloading-induced osteoporosis in bed ridden patients, mechanical stress determines the levels of bone mass. Many molecules have been suggested to be involved in sensing mechanical stress in bone, while the full pathways for this event has not yet been identified. We examined the role of TRPV4 in unloading-induced bone loss. Hind limb unloading induced osteopenia in wild-type mice. In contrast, TRPV4 deficiency suppressed such unloading-induced bone loss. As underlying mechanism for such effects, TRPV4 deficiency suppressed unloading-induced reduction in the levels of mineral apposition rate and bone formation rate. In these mice, unloading-induced increase in the number of osteoclasts in the primary trabecular bone was suppressed by TRPV4 deficiency. Unloading-induced reduction in the longitudinal length of primary trabecular bone was also suppressed by TRPV4 deficiency. TRPV4 protein is expressed in both osteoblasts and osteoclasts. These results indicated that TRPV4 plays a critical role in unloading-induced bone loss.  相似文献   

6.
Continuous elevation of parathyroid hormone (PTH) increases osteoclast precursors, the number of osteoclasts on cancellous bone, and bone turnover. The essential molecular mediators of these effects are controversial, however, and both increased receptor activator of NF-kappaB ligand (RANKL) and IL-6 have been implicated. The goal of these studies was to determine whether continuous elevation of endogenous PTH alters IL-6 gene expression in vivo and whether IL-6 is required for PTH-induced bone loss. To accomplish this, we generated transgenic mice harboring a luciferase reporter gene under the control of IL-6 gene regulatory regions to allow accurate quantification of IL-6 gene activity in vivo. In these mice, induction of secondary hyperparathyroidism using a calcium-deficient diet did not alter IL-6-luciferase transgene expression, whereas RANKL mRNA expression was elevated in bone tissue. Moreover, secondary hyperparathyroidism induced an equivalent amount of bone loss in wild-type and IL-6-deficient mice, and PTH elevated RANKL mRNA and osteoclast formation to the same extent in bone marrow cultures derived from wild-type and IL-6-deficient mice. These results demonstrate that IL-6 is not required for the osteoclast formation and bone loss that accompanies continuous elevation of PTH.  相似文献   

7.
Parathyroid hormone (PTH) is the only Food and Drug Administration-approved anabolic agent to treat osteoporosis; however, the cellular targets of PTH action in bone remain controversial. PTH modulates bone turnover by binding to the PTH/PTH-related peptide (PTHrP) type 1 receptor (PPR), a G-protein-coupled receptor highly expressed in bone and kidneys. Osteocytes, the most abundant cells in adult bone, also express PPR. However, the physiological relevance of PPR signaling in osteocytes remains to be elucidated. Toward this goal, we generated mice with PPR deletion in osteocytes (Ocy-PPRKO). Skeletal analysis of these mice revealed a significant increase in bone mineral density and trabecular and cortical bone parameters. Osteoblast activities were reduced in these animals, as demonstrated by decreased collagen type I α1 mRNA and receptor activator of NF-κB ligand (RANKL) expression. Importantly, when subjected to an anabolic or catabolic PTH regimen, Ocy-PPRKO animals demonstrated blunted skeletal responses. PTH failed to suppress SOST/Sclerostin or induce RANKL expression in Ocy-PPRKO animals compared with controls. In vitro, osteoclastogenesis was significantly impaired in Ocy-PPRKO upon PTH administration, indicating that osteocytes control osteoclast formation through a PPR-mediated mechanism. Taken together, these data indicate that PPR signaling in osteocytes is required for bone remodeling, and receptor signaling in osteocytes is needed for anabolic and catabolic skeletal responses.  相似文献   

8.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   

9.
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.  相似文献   

10.
Systemic hormonal control exerts its effect through the regulation of local target tissues, which in turn regulate upstream signals in a feedback loop. The parathyroid hormone (PTH) axis is a well defined hormonal signaling system that regulates calcium levels and bone metabolism. To understand the interplay between systemic and local signaling in bone, we examined the effects of deficiency of the bone matrix protein osteopontin (OPN) on the systemic effects of PTH specifically within osteoblastic cell lineages. Parathyroid hormone receptor (PPR) transgenic mice expressing a constitutively active form of the receptor (caPPR) specifically in cells of the osteoblast lineage have a high bone mass phenotype. In these mice, OPN deficiency further increased bone mass. This increase was associated with conversion of the major intertrabecular cell population from hematopoietic cells to stromal/osteoblastic cells and parallel elevations in histomorphometric and biochemical parameters of bone formation and resorption. Treatment with small interfering RNA (siRNA) for osteopontin enhanced H223R mutant caPPR-induced cAMP-response element (CRE) activity levels by about 10-fold. Thus, in addition to the well known calcemic feedback system for PTH, local feedback regulation by the bone matrix protein OPN also plays a significant role in the regulation of PTH actions.  相似文献   

11.
The ontogeny of bone marrow and its stromal compartment, which is generated from skeletal stem/progenitor cells, was investigated in vivo and ex vivo in mice expressing constitutively active parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrP; caPPR) under the control of the 2.3-kb bone-specific mouse Col1A1 promoter/enhancer. The transgene promoted increased bone formation within prospective marrow space, but delayed the transition from bone to bone marrow during growth, the formation of marrow cavities, and the appearance of stromal cell types such as marrow adipocytes and cells supporting hematopoiesis. This phenotype resolved spontaneously over time, leading to the establishment of marrow containing a greatly reduced number of clonogenic stromal cells. Proliferative osteoprogenitors, but not multipotent skeletal stem cells (mesenchymal stem cells), capable of generating a complete heterotopic bone organ upon in vivo transplantation were assayable in the bone marrow of caPPR mice. Thus, PTH/PTHrP signaling is a major regulator of the ontogeny of the bone marrow and its stromal tissue, and of the skeletal stem cell compartment.  相似文献   

12.
IL-1alpha transgenic (Tg) mice exhibit chronic inflammatory arthritis and subsequent osteopenia, with IL-1-induced GM-CSF playing an important role in the pathogenesis. This study analyzed the mechanisms underlying osteopenia in Tg mice, and the therapeutic effects of the cyclooxygenase-2 inhibitor celecoxib on such osteopenia. Inhibited osteoclast formation was observed in RANKL-treated bone marrow cell (BMC) cultures from Tg mice and coculture of Tg-derived BMCs and wild-type-derived primary osteoblasts (POBs). FACS analysis indicated that this inhibition was attributable to a decreased number of osteoclast precursors within Tg-derived BMCs. Moreover, in coculture of Tg-derived POBs and either Tg- or wild-type-derived BMCs, osteoclast formation was markedly inhibited because Tg-derived POBs produced abundant GM-CSF, known as a potent inhibitor of osteoclast differentiation. Histomorphometric analysis of Tg mice revealed that both bone formation and resorption were decreased, with bone formation decreased more prominently. Interestingly, administration of celecoxib resulted in further deterioration of osteopenia where bone formation was markedly suppressed, whereas bone resorption remained unchanged. These results were explained by our in vitro observation that celecoxib dose-dependently and dramatically decreased osteogenesis by Tg mouse-derived POBs in culture, whereas mRNA expressions of GM-CSF and M-CSF remained unchanged. Consequently, blockade of PGE(2) may exert positive effects on excessively enhanced bone resorption observed in inflammatory bone disease, whereas negative effects may occur mainly through reduced bone formation, when bone resorption is constitutively down-regulated as seen in Tg mice.  相似文献   

13.
The contribution of remodeling-based bone formation coupled to osteoclast activity versus modeling-based bone formation that occurs independently of resorption, to the anabolic effect of PTH remains unclear. We addressed this question using transgenic mice with activated PTH receptor signaling in osteocytes that exhibit increased bone mass and remodeling, recognized skeletal effects of PTH elevation. Direct inhibition of bone formation was accomplished genetically by overexpressing the Wnt antagonist Sost/sclerostin; and resorption-dependent bone formation was inhibited pharmacologically with the bisphosphonate alendronate. We found that bone formation induced by osteocytic PTH receptor signaling on the periosteal surface depends on Wnt signaling but not on resorption. In contrast, bone formation on the endocortical surface results from a combination of Wnt-driven increased osteoblast number and resorption-dependent osteoblast activity. Moreover, elevated osteoclasts and intracortical/calvarial porosity is exacerbated by overexpressing Sost and reversed by blocking resorption. Furthermore, increased cancellous bone is abolished by Wnt inhibition but further increased by blocking resorption. Thus, resorption induced by PTH receptor signaling in osteocytes is critical for full anabolism in cortical bone, but tempers bone gain in cancellous bone. Dissecting underlying mechanisms of PTH receptor signaling would allow targeting actions in different bone compartments, enhancing the therapeutic potential of the pathway.  相似文献   

14.
15.
Reduced mechanical stress is a major cause of osteoporosis in the elderly, and the osteocyte network, which comprises a communication system through processes and canaliculi throughout bone, is thought to be a mechanosensor and mechanotransduction system; however, the functions of osteocytes are still controversial and remain to be clarified. Unexpectedly, we found that overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteoblast and osteoclast differentiation were unaffected by BCL2 transgene in vitro. However, the cortical bone mass increased due to enhanced osteoblast function and suppressed osteoclastogenesis at 4 months of age, when the frequency of TUNEL-positive lacunae reached 75%. In the unloaded condition, the trabecular bone mass decreased in both wild-type and BCL2 transgenic mice at 6 weeks of age, while it decreased due to impaired osteoblast function and enhanced osteoclastogenesis in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Rankl and Opg were highly expressed in osteocytes, but Rankl expression in osteoblasts but not in osteocytes was increased at unloading in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Sost was locally induced at unloading in wild-type mice but not in BCL2 transgenic mice, and the dissemination of Sost was severely interrupted in BCL2 transgenic mice, showing the severely impaired osteocyte network. These findings indicate that the osteocyte network is required for the upregulation of Rankl in osteoblasts and Sost in osteocytes in the unloaded condition. These findings suggest that the osteocyte network negatively regulate bone mass by inhibiting osteoblast function and activating osteoclastogenesis, and these functions are augmented in the unloaded condition at least partly through the upregulation of Rankl expression in osteoblasts and that of Sost in osteocytes, although it cannot be excluded that low BCL2 transgene expression in osteoblasts contributed to the enhanced osteoblast function.  相似文献   

16.
17.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3 weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.  相似文献   

18.
One G protein-coupled receptor (GPCR) can activate more than one G protein, but the physiologic importance of such activation has not been demonstrated in vivo. We have generated mice expressing exclusively a mutant form of the PTH/PTHrP receptor (DSEL) that activates adenylyl cyclase normally but not phospholipase C (PLC). DSEL mutant mice exhibit abnormalities in embryonic endochondral bone development, including delayed ossification and increased chondrocyte proliferation. Analysis of the differentiation of embryonic metatarsals in vitro shows that PTH(1-34) and forskolin inhibit, whereas active phorbol ester stimulates, hypertrophic differentiation. Thus, PLC signaling via the PTH/PTHrP receptor normally slows the proliferation and hastens the differentiation of chondrocytes, actions that oppose the dominant effects of PTH/PTHrP receptors and that involve cAMP-dependent signaling pathways.  相似文献   

19.
To determine the local mechanisms involved in the effects of skeletal unloading on bone formation, we studied the temporal pattern of mRNA levels for insulin-like growth factor-I (IGF-I), IGF-I receptor type I (IGF-IR), and transforming growth factor beta receptor type II (TGF-betaRII) in relation to osteoblast phenotypic markers and osteoblast activity in hindlimb suspended rats. Skeletal unloading decreased bone volume and the mineralizing and osteoblastic surfaces at 4, 7, and 14 days in the tibial metaphysis, whereas the mineral appositional rate returned to normal at 14 days of suspension. RT-PCR analysis showed that skeletal unloading decreased type 1 collagen (Col 1) and osteocalcin (OC) mRNA levels in metaphyseal bone at days 4 and 7, and the levels returned to normal at 14 days of suspension. Unloading also decreased mRNA levels for IGF-I, IGF-IR, and TGF-betaRII at 4-7 days in the metaphyseal bone. However, IGF-I and IGF-IR levels rose above normal at 14 days of suspension. The biphasic changes in IGF-I mRNA levels were strongly correlated with Col 1 and OC mRNA levels. The associated biphasic pattern of IGF-I/IGF-IR expression, osteoblast markers, and osteoblast activity strongly suggests an important role for IGF-I signaling in the local effect of skeletal unloading on metaphyseal bone formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号