首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembly of initiation factors on individual replication origins at onset of S phase is crucial for regulation of replication timing and repression of initiation by S-phase checkpoint control. We dissected the process of preinitiation complex formation using a point mutation in fission yeast nda4-108/mcm5 that shows tight genetic interactions with sna41(+)/cdc45(+). The mutation does not affect loading of MCM complex onto origins, but impairs Cdc45-loading, presumably because of a defect in interaction of MCM with Cdc45. In the mcm5 mutant, however, Sld3, which is required for Cdc45-loading, proficiently associates with origins. Origin-association of Sld3 without Cdc45 is also observed in the sna41/cdc45 mutant. These results suggest that Sld3-loading is independent of Cdc45-loading, which is different from those observed in budding yeast. Interestingly, returning the arrested mcm5 cells to the permissive temperature results in immediate loading of Cdc45 to the origin and resumption of DNA replication. These results suggest that the complex containing MCM and Sld3 is an intermediate for initiation of DNA replication in fission yeast.  相似文献   

2.
Regulation of DNA replication machinery by Mrc1 in fission yeast   总被引:3,自引:0,他引:3  
Faithful replication of chromosomes is crucial to genome integrity. In yeast, the ORC binds replication origins throughout the cell cycle. However, Cdc45 binds these before S-phase, and, during replication, it moves along the DNA with MCM helicase. When replication progression is inhibited, checkpoint regulation is believed to stabilize the replication fork; the detailed mechanism, however, remains unclear. To examine the relationship between replication initiation and elongation defects and the response to replication elongation block, we used fission yeast mutants of Orc1 and Cdc45--orp1-4 and sna41-928, respectively--at their respective semipermissive temperatures with regard to BrdU incorporation. Both orp1 and sna41 cells exhibited HU hypersensitivity in the absence of Chk1, a DNA damage checkpoint kinase, and were defective in full activation of Cds1, a replication checkpoint kinase, indicating that normal replication is required for Cds1 activation. Mrc1 is required to activate Cds1 and prevent the replication machinery from uncoupling from DNA synthesis. We observed that, while either the orp1 or the sna41 mutation partially suppressed HU sensitivity of cds1 cells, sna41 specifically suppressed that of mrc1 cells. Interestingly, sna41 alleviated the defect in recovery from HU arrest without increasing Cds1 activity. In addition to sna41, specific mutations of MCM suppressed the HU sensitivity of mrc1 cells. Thus, during elongation, Mrc1 may negatively regulate Cdc45 and MCM helicase to render stalled forks capable of resuming replication.  相似文献   

3.
Initiation of DNA replication in eukaryotic cells is regulated through the ordered assembly of replication complexes at origins of replication. Association of Cdc45 with the origins is a crucial step in assembly of the replication machinery, hence can be considered a target for the regulation of origin activation. To examine the process required for SpCdc45 loading, we isolated fission yeast SpSld3, a counterpart of budding yeast Sld3 that interacts with Cdc45. SpSld3 associates with the replication origin during G1-S phases and this association depends on Dbf4-dependent (DDK) kinase activity. In the corresponding period, SpSld3 interacts with minichromosome maintenance (MCM) proteins and then with SpCdc45. A temperature-sensitive sld3-10 mutation suppressed by the multicopy of the sna41+ encoding SpCdc45 impairs loading of SpCdc45 onto chromatin. In addition, this mutation leads to dissociation of preloaded Cdc45 from chromatin in the hydroxyurea-arrested S phase, and DNA replication upon removal of hydroxyurea is retarded. Thus, we conclude that SpSld3 is required for stable association of Cdc45 with chromatin both in initiation and elongation of DNA replication. The DDK-dependent origin association suggests that SpSld3 is involved in temporal regulation of origin firing.  相似文献   

4.
Assembly of replication complexes at the replication origins is strictly regulated. Cdc45p is known to be a part of the active replication complexes. In Xenopus egg extracts, Cdc45p was shown to be required for loading of DNA polymerase alpha onto chromatin. The fission yeast cdc45 homologue was identified as a suppressor for nda4 and named sna41. Nevertheless, it is not known how Cdc45p facilitates loading of DNA polymerase alpha onto chromatin, particularly to prereplicative complexes. To gain novel insight into the function of this protein in fission yeast, we characterized the fission yeast Cdc45 homologue, Sna41p. We have constructed C-terminally epitope-tagged Sna41p and Pol alpha p and replaced the endogenous genes with the corresponding tagged genes. Analyses of protein-protein interactions in vivo by the use of these tagged strains revealed the following: Sna41p interacts with Pol alpha p throughout the cell cycle, whereas it interacts with Mis5p/Mcm6p in the chromatin fractions at the G(1)-S boundary through S phase. In an initiation-defective sna41 mutant, sna41(goa1), interaction of Pol alpha p with Mis5p is not observed, although Pol alpha p loading onto the chromatin that occurs before G(1) START is not affected. These results show that fission yeast Sna41p facilitates the loading of Pol alpha p onto minichromosome maintenance proteins. Our results are consistent with a model in which loading of Pol alpha p onto replication origins occurs through two steps, namely, loading onto chromatin at preSTART and association with prereplicative complexes at G(1)-S through Sna41p, which interacts with minichromosome maintenance proteins in a cell cycle-dependent manner.  相似文献   

5.
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.  相似文献   

6.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

7.
8.
Eukaryotic DNA replication is initiated at multiple origins of replication, where many replication proteins assemble under the control of the cell cycle [1]. A key process of replication initiation is to convert inactive Mcm2-7 to active Cdc45-Mcm-GINS (CMG) replicative helicase [2]. However, it is not known whether the CMG assembly would automatically activate its helicase activity and thus assemble the replisome. Mcm10 is an evolutionally conserved essential protein required for the initiation of replication [3, 4]. Although the roles of many proteins involved in the initiation are understood, the role of Mcm10 remains controversial [5-9]. To characterize Mcm10 in more detail, we constructed budding yeast cells bearing a degron-fused Mcm10 protein that can be efficiently degraded in response to auxin. In the absence of Mcm10, a stable CMG complex was assembled at origins. However, subsequent translocation of CMG, replication protein A loading to origins, and the intra-S checkpoint activation were severely diminished, suggesting that origin unwinding is defective. We also found that Mcm10 associates with origins during initiation in an S-cyclin-dependent kinase- and Cdc45-dependent manner. Thus, Mcm10 plays an essential role in functioning of the CMG replicative helicase independent of assembly of a stable CMG complex at origins.  相似文献   

9.
Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication that potentially regulates timing and locations of replication origin firing. Here, we show that viability of fission yeast hsk1Δ cells can be restored by loss of mrc1, which is required for maintenance of replication fork integrity, by cds1Δ, or by a checkpoint-deficient mutant of mrc1. In these mutants, normally inactive origins are activated in the presence of hydroxyurea and binding of Cdc45 to MCM is stimulated. mrc1Δ bypasses hsk1Δ more efficiently because of its checkpoint-independent inhibitory functions. Unexpectedly, hsk1Δ is viable at 37°C. More DNA is synthesized, and some dormant origins fire in the presence of hydroxyurea at 37°C. Furthermore, hsk1Δ bypass strains grow poorly at 25°C compared with higher temperatures. Our results show that Hsk1 functions for DNA replication can be bypassed by different genetic backgrounds as well as under varied physiological conditions, providing additional evidence for plasticity of the replication program in eukaryotes.  相似文献   

10.
11.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

12.
The roles in DNA replication of two distinct protein kinases, Cdc7p/Dbf4p and Cdk1p/Clb (B-type cyclin), were studied. This was accomplished through a genetic and molecular analysis of the mechanism by which the mcm5-bob1 mutation bypasses the function of the Cdc7p/Dbf4p kinase. Genetic experiments revealed that loss of either Clb5p or Clb2p cyclins suppresses the mcm5-bob1 mutation and prevents bypass. These two cyclins have distinct roles in bypass and presumably in DNA replication as overexpression of one could not complement the loss of the other. Furthermore, the ectopic expression of CLB2 in G1 phase cannot substitute for CLB5 function in bypass of Cdc7p/Dbf4p by mcm5-bob1. Molecular experiments revealed that the mcm5-bob1 mutation allows for constitutive loading of Cdc45p at early origins in arrested G1 phase cells when both kinases are inactive. A model is proposed in which the Mcm5-bob1 protein assumes a unique molecular conformation without prior action by either kinase. This conformation allows for stable binding of Cdc45p to the origin. However, DNA replication still cannot occur without the combined action of Cdk1p/Clb5p and Cdk1p/Clb2p. Thus Cdc7p and Cdk1p kinases catalyze the initiation of DNA replication at several distinct steps, of which only a subset is bypassed by the mcm5-bob1 mutation.  相似文献   

13.
Yanow SK  Lygerou Z  Nurse P 《The EMBO journal》2001,20(17):4648-4656
Cdc18/Cdc6 and Cdt1 are essential initiation factors for DNA replication. In this paper we show that expression of Cdc18 in fission yeast G2 cells is sufficient to override the controls that ensure one S phase per cell cycle. Cdc18 expression in G2 induces DNA synthesis by re-firing replication origins and recruiting the MCM Cdc21 to chromatin in the presence of low levels of Cdt1. However, when Cdt1 is expressed together with Cdc18 in G2, cells undergo very rapid, uncontrolled DNA synthesis, accumulating DNA contents of 64C or more. Our data suggest that Cdt1 may potentiate re-replication by inducing origins to fire more persistently, possibly by stabilizing Cdc18 on chromatin. In addition, low level expression of a mutant form of Cdc18 that cannot be phosphorylated by cyclin-dependent kinases is not sufficient to induce replication in G2, but does so only when co-expressed with Cdt1. Thus, regulation of both Cdc18 and Cdt1 in G2 plays a crucial role in preventing the re-initiation of DNA synthesis until the next cell cycle.  相似文献   

14.
Fertilization relieves the oocyte from a cell cycle arrest, inducing progression towards mitotic cycles. While the signalling pathways involved in oocyte to embryo transition have been widely investigated, how they specifically trigger DNA replication is still unclear. We used sea urchin eggs whose oocytes are arrested in G1 to investigate in vivo the molecular mechanisms regulating initiation of replication after fertilization. Unexpectedly, we found that CDC6, Cdt1 and MCM3, components of the pre-replication complexes (pre-RC) which license origins for replication, were already loaded on female chromatin before fertilization. This is the first demonstration of a cell cycle arrest in metazoan in which chromatin is already licensed for replication. In contrast pre-RC assemble on chromatin post-fertilization as in other organisms. These differences in the timing of pre-RC assembly are accompanied by differences in Cdk2 requirement for DNA replication initiation between female and male chromatin post-fertilization. Finally, we demonstrated that a concomitant inhibition of MAP kinase and ATM/ATR pathways releases the block to DNA synthesis. Our findings provide new insight into the mechanisms contributing to the release of G1 arrest and the control of S-phase entry at fertilization.  相似文献   

15.
16.
Cdc47p is a member of the minichromosome maintenance (MCM) family of polypeptides, which have a role in the early stages of chromosomal DNA replication. Here, we show that Cdc47p assembles into stable complexes with two other members of the MCM family, Cdc46p and Mcm3p. The assembly of Cdc47p into complexes with Cdc46p does not appear to be cell cycle regulated, making it unlikely that these interactions per se are a rate-limiting step in the control of S phase. Cdc45p is also shown to interact with Cdc47p in vivo and to be a component of high-molecular-weight MCM complexes in cell lysates. Like MCM polypeptides, Cdc45p is essential for the initiation of chromosomal DNA replication in Saccharomyces cerevisiae; however, Cdc45p remains in the nucleus throughout the cell cycle, whereas MCMs are nuclear only during G1. We characterize two mutations in CDC47 and CDC46 which arrest cells with unduplicated DNA as a result of single base substitutions. The corresponding amino acid substitutions in Cdc46p and Cdc47p severely reduce the ability of these polypeptides to assemble in a complex with each other in vivo and in vitro. This argues that assembly of Cdc47p into complexes with other MCM polypeptides is important for its role in the initiation of chromosomal DNA replication.  相似文献   

17.
The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast.   总被引:31,自引:6,他引:25       下载免费PDF全文
L S Drury  G Perkins    J F Diffley 《The EMBO journal》1997,16(19):5966-5976
The budding yeast Cdc6 protein (Cdc6p) is essential for formation of pre-replicative complexes (pre-RCs) at origins of DNA replication. Regulation of pre-RC assembly plays a key role in making initiation of DNA synthesis dependent upon passage through mitosis and in limiting DNA replication to once per cell cycle. Cdc6p is normally only present at high levels during the G1 phase of the cell cycle. This is partly because the CDC6 gene is only transcribed during G1. In this article we show that rapid degradation of Cdc6p also contributes to this periodicity. Cdc6p degradation rates are regulated during the cell cycle, reaching a peak during late G1/early S phase. Removal of a 47-amino-acid domain near the N-terminus of Cdc6p prevents degradation of Cdc6p. Likewise, mutations in the Cdc4/34/53 pathway involved in ubiquitin-mediated degradation block proteolysis and genetic evidence is presented indicating that the N-terminus of Cdc6p interacts with the Cdc4/34/53 pathway, probably through Cdc4p. A stable Cdc6p mutant which is no longer degraded by the Cdc4/34/53 pathway is, none the less, fully functional. Constitutive overexpression of either wild-type or stable Cdc6p does not induce re-replication and does not induce assembly of pre-replicative complexes after DNA replication is complete.  相似文献   

18.

Background

Chromosomal DNA replication in eukaryotes initiates from multiple origins of replication, and because of this multiplicity, activation of replication origins is likely to be highly coordinated; origins fire at characteristic times, with some origins firing on average earlier (early-firing origins) and others later (late-firing origins) in the S phase of the budding yeast cell cycle. However, the molecular basis for such temporal regulation is poorly understood.

Results

We show that origin association of the low-abundance replication proteins Sld3, Sld7, and Cdc45 is the key to determining the temporal order of origin firing. These proteins form a complex and associate with the early-firing origins in G1 phase in a manner that depends on Dbf4-dependent kinase (DDK), which is essential for the initiation of DNA replication. An increased dosage of Sld3, Sld7, and Cdc45 allows the late-firing origins to fire earlier in S phase. Additionally, an increased dosage of DDK also allows the late-firing origins to fire earlier.

Conclusions

The DDK-dependent limited association between origins and Sld3-Sld7-Cdc45 is a key step for determining the timing of origin firing.  相似文献   

19.
In Saccharomyces cerevisiae, replication origins are activated with characteristic timing during S phase. S-phase cyclin-dependent kinases (S-CDKs) and Cdc7p-Dbf4p kinase are required for origin activation throughout S phase. The activation of S-CDKs leads to association of Cdc45p with chromatin, raising the possibility that Cdc45p defines the assembly of a new complex at each origin. Here we show that both Cdc45p and replication protein A (RPA) bind to Mcm2p at the G(1)-S transition in an S-CDK-dependent manner. During S phase, Cdc45p associates with different replication origins at specific times. The origin associations of Cdc45p and RPA are mutually dependent, and both S-CDKs and Cdc7p-Dbf4p are required for efficient binding of Cdc45p to origins. These findings suggest that S-CDKs and Cdc7p-Dbf4p promote loading of Cdc45p and RPA onto a preformed prereplication complex at each origin with preprogrammed timing. The ARS1 association of Mcm2p, but not that of the origin recognition complex, is diminished by disruption of the B2 element of ARS1, a potential origin DNA-unwinding element. Cdc45p is required for recruiting DNA polymerase alpha onto chromatin, and it associates with Mcm2p, RPA, and DNA polymerase epsilon only during S phase. These results suggest that the complex containing Cdc45p, RPA, and MCMs is involved in origin unwinding and assembly of replication forks at each origin.  相似文献   

20.
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1Chk2/Rad53 through the Rad3ATR/Mec1-Mrc1Claspin pathway. Hsk1, the Cdc7 homolog of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not significantly in an mcm2 or polε mutant. These results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.Key words: Cdc7, Cdc45, checkpoint, DNA replication, Mrc1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号