首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars ‘Watson’ and ‘Fuyuhikari’ by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.  相似文献   

2.
An endochitinase gene ‘ech42’ from the biocontrol fungus ‘Trichoderma virens’ was introduced to Brassica juncea (L). Czern and Coss via Agrobaterium tumefaciens mediated genetic transformation method. Integration and expression of the ‘ech42’ gene in transgenic lines were confirmed by PCR, RT-PCR and Southern hybridization. Transgenic lines (T1) showed expected 3:1 Mendelian segregation ratio when segregation analysis for inheritance of transgene ‘hpt’ was carried out. Fluorimetric analysis of transgenic lines (T0 and T1) showed 7 fold higher endochitinase activity than the non-transformed plant. Fluorimetric zymogram showed presence of endochitinase (42 kDa) in crude protein extract of transgenic lines. In detached leaf bioassay with fungi Alternaria brassicae and Alternaria brassicicola, transgenic lines (T0 and T1) showed delayed onset of lesions as well as 30–73 % reduction in infected leaf area compared to non-transformed plant.  相似文献   

3.
To evaluate the effectiveness of a germin-like protein (GLP) in legumes against the serious soil-borne pathogen Fusarium oxysporum f. sp. lentis, an Oryza sativa root-expressed GLP (OsRGLP1) was expressed in the model legume Medicago truncatula using the recombinant vector pCOsRGLP1. The transgene was highly expressed in M. truncatula transformed lines as assessed by RT-qPCR. Consistent with the active status of the transgene there was an elevated accumulation of H2O2 in transformed progeny. Enzymatic characterization of T1 transgenic progeny showed increased superoxide dismutase (SOD) activity. The additional SOD activity in transgenic lines was insensitive to potassium cyanide and sensitive to H2O2 indicating its resemblance to FeSOD. The effectiveness of the OsRGLP1 gene was tested by monitoring the root disease after infection of wild-type and transgenic lines. Wild-type plants were greatly affected by the pathogen infection showing a percent disease index value of 50 compared to 10–18 for the transgenic lines. The tolerance of the transgenic lines leads to recovery in fresh weight and pod production to an almost normal level. Analysis of defense-related genes downstream of hydrogen peroxide (H2O2) in transgenic plants showed induction of salicylic acid and jasmonate signaling pathways and increased expression of some pathogenesis-related-1 (PR-1) genes and a plant defensin gene. Overall, the findings suggest that OsRGLP1 provides protection against the fungal pathogen F. oxysporum that may involve the direct influence of H2O2 on signaling pathways leading to the activation of defense-related genes.  相似文献   

4.
5.
6.
7.
Wheat Fusarium Head Blight (FHB), mainly caused by Fusarium graminearum (F.g), is a destructive fungal disease worldwide. FHB can not only cause considerable reduction in yield, but more seriously, can contaminate grain by trichothecene toxins released by the fungus. Here, we report new insights into the function and underlying mechanisms of a UDP-glycosyltransferase gene, Ta-UGT 3 , that is involved in FHB resistance in wheat. In our previous study, Ta-UGT 3 was found to enhance host tolerance against deoxynivalenol (DON) in Arabidopsis. In this study, four transgenic lines over-expressing Ta-UGT 3 in a FHB highly susceptible wheat variety, Alondra’s, were obtained and characterized. 3 years of assays using single floret inoculation with F.g indicated that all four transgenic lines exhibited significantly enhanced type II resistance to FHB and less DON accumulation in the grains compared to the untransformed control. Histological observation using GFP labelled F.g was in agreement with the above test results since over-expression of Ta-UGT 3 dramatically inhibited expansion of F.g. To explore the putative mechanism of resistance mediated by Ta-UGT 3 , microarray analysis, qRT-PCR and hormone measurements were performed. Microarray analysis showed that DON up-regulated genes, such as TaNPR1, in the susceptible control, and down-regulated genes in F.g inoculated transgenic lines, while qRT-PCR showed that some defence related genes were up-regulated in F.g inoculated transgenic lines. Ta-UGT 3 over-expression also changed the contents of the endogenous hormones SA and JA in the spikes. These data suggest that Ta-UGT 3 positively regulates the defence responses to F.g, perhaps by regulating defence-related and DON-induced downstream genes.  相似文献   

8.
9.
The insecticidal cry genes of Bacillus thuringiensis (Bt) have been successfully used for development of insect resistant transgenic rice plants. In this study, a novel cry2AX1 gene consisting a sequence of cry2Aa and cry2Ac gene driven by rice rbcS promoter was introduced into a rice cultivar, ASD16. Among 27 putative rice transformants, 20 plants were found to be positive for cry2AX1 gene. The expression of Cry2AX1 protein in transgenic rice plants ranged from 5.95 to 122.40 ng/g of fresh leaf tissue. Stable integration of the transgene was confirmed in putative transformants of rice by Southern blot hybridization analysis. Insect bioassay on T0 transgenic rice plants against rice leaffolder (Cnaphalocrosis medinalis) recorded larval mortality up to 83.33 %. Stable inheritance and expression of cry2AX1 gene in T1 progenies was demonstrated using Southern and ELISA. The detached leaf bit bioassay with selected T1 plants showed 83.33–90.00 % mortality against C. medinalis. The whole plant bioassay for T1 plants with rice leaffolder showed significant level of resistance even at a lower level of Cry2AX1 expression varying from 131 to 158 ng/g fresh leaf tissue during tillering stage.  相似文献   

10.
11.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

12.
13.
Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.  相似文献   

14.
15.
16.
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T2–T4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.  相似文献   

17.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

18.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

19.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

20.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号