首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Iron is required for neuronal function but in excess generates neurodegeneration. Although the iron homeostasis machinery in neurons has been described extensively, little is known about the influence of corticosterone on the iron homeostasis in neurons. In this study, we characterized the response of hippocampal neurons to a model of progressive corticosterone condition. We found that increasing extracellular corticosterone-induced iron accumulation killed a large proportion of neurons. Iron concentrations were significantly increased in the corticosterone-treated cells. In the hippocampal neurons, corticosterone decreased expression of ferritin and increased expression of transferrin receptor1 (TfR1), iron regulatory protein1 (IRP1), and divalent metal transporter 1. Corticosterone-induced elevation of IRP1 expression can cause increase of TfR1 and decrease of ferritin expression, which further leads to iron accumulation in hippocampal neurons and subsequently increases the oxidative damage of the neurons; it is indicated that corticosterone might be an important reason for iron deposition-caused neurodegenerative diseases.  相似文献   

2.
Iron is required for neuronal function but in excess generates neurodegeneration. Although the iron homeostasis machinery in neurons has been described extensively, little is known about the influence of corticosterone on the iron homeostasis in neurons. In this study, we characterized the response of hippocampal neurons to a model of progressive corticosterone condition. We found that increasing extracellular corticosterone-induced iron accumulation killed a large proportion of neurons. Iron concentrations were significantly increased in the corticosterone-treated cells. In the hippocampal neurons, corticosterone decreased expression of ferritin and increased expression of transferrin receptor1 (TfR1), iron regulatory protein1 (IRP1), and divalent metal transporter 1. Corticosterone-induced elevation of IRP1 expression can cause increase of TfR1 and decrease of ferritin expression, which further leads to iron accumulation in hippocampal neurons and subsequently increases the oxidative damage of the neurons; it is indicated that corticosterone might be an important reason for iron deposition-caused neurodegenerative diseases.  相似文献   

3.
Iron is a key micronutrient for the human body and participates in biological processes, such as oxygen transport, storage, and utilization. Iron homeostasis plays a crucial role in the function of the heart and both iron deficiency and iron overload are harmful to the heart, which is partly mediated by increased oxidative stress. Iron enters the cardiomyocyte through the classic pathway, by binding to the transferrin 1 receptor (TfR1), but also through other routes: T-type calcium channel (TTCC), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), Zrt-, Irt-like Proteins (ZIP) 8 and 14. Only one protein, ferroportin (FPN), extrudes iron from cardiomyocytes. Intracellular iron is utilized, stored bound to cytoplasmic ferritin or imported by mitochondria. This cardiomyocyte iron homeostasis is controlled by iron regulatory proteins (IRP). When the cellular iron level is low, expression of IRPs increases and they reduce expression of FPN, inhibiting iron efflux, reduce ferritin expression, inhibiting iron storage and augment expression of TfR1, increasing cellular iron availability. Such cellular iron homeostasis explains why the heart is very susceptible to iron overload: while cardiomyocytes possess redundant iron importing mechanisms, they are equipped with only one iron exporting protein, ferroportin. Furthermore, abnormalities of iron homeostasis have been found in heart failure and coronary artery disease, however, no clear picture is emerging yet in this area. If we better understand iron homeostasis in the cardiomyocyte, we may be able to develop better therapies for a variety of heart diseases to which abnormalities of iron homeostasis may contribute.  相似文献   

4.
5.
Cellular iron uptake and storage are coordinately controlled by binding of iron-regulatory proteins (IRP), IRP1 and IRP2, to iron-responsive elements (IREs) within the mRNAs encoding transferrin receptor (TfR) and ferritin. Under conditions of iron starvation, both IRP1 and IRP2 bind with high affinity to cognate IREs, thus stabilizing TfR and inhibiting translation of ferritin mRNAs. The IRE/IRP regulatory system receives additional input by oxidative stress in the form of H(2)O(2) that leads to rapid activation of IRP1. Here we show that treating murine B6 fibroblasts with a pulse of 100 microm H(2)O(2) for 1 h is sufficient to alter critical parameters of iron homeostasis in a time-dependent manner. First, this stimulus inhibits ferritin synthesis for at least 8 h, leading to a significant (50%) reduction of cellular ferritin content. Second, treatment with H(2)O(2) induces a approximately 4-fold increase in TfR mRNA levels within 2-6 h, and subsequent accumulation of newly synthesized protein after 4 h. This is associated with a profound increase in the cell surface expression of TfR, enhanced binding to fluorescein-tagged transferrin, and stimulation of transferrin-mediated iron uptake into cells. Under these conditions, no significant alterations are observed in the levels of mitochondrial aconitase and the Divalent Metal Transporter DMT1, although both are encoded by two as yet lesser characterized IRE-containing mRNAs. Finally, H(2)O(2)-treated cells display an increased capacity to sequester (59)Fe in ferritin, despite a reduction in the ferritin pool, which results in a rearrangement of (59)Fe intracellular distribution. Our data suggest that H(2)O(2) regulates cellular iron acquisition and intracellular iron distribution by both IRP1-dependent and -independent mechanisms.  相似文献   

6.
Iron may populate distinct hepatocellular iron pools that differentially regulate expression of proteins such as ferritin and transferrin receptor (TfR) through iron-regulatory mRNA-binding proteins (IRPs), and may additionally regulate uptake and accumulation of non-transferrin-bound iron (NTBI). We examined iron-regulatory protein (IRP) binding activity and ferritin/TfR expression in human hepatoma (HepG2) cells exposed to iron at different levels for different periods. Several iron-dependent RNA-binding activities were identified, but only IRP increased with beta-mercaptoethanol. With exposures between 0 and 20 microg/ml iron, decreases in IRP binding accompanied large changes in TfR and ferritin expression, while chelation of residual iron with deferoxamine (DFO) caused a large increase in IRP binding with little additional effect on TfR or ferritin expression. Cellular iron content increased beyond 4 days of exposure to iron at 20 microg/ml, when IRP binding, TfR, and ferritin had all reached stable levels. However, iron content of the cells plateaued by 7 days, or decreased with 24 h exposure to very high concentrations (>50 microg/ml) of iron. These results indicate that iron-replete HepG2 cells exhibit a narrow range of maximal responsiveness of the IRP-regulatory mechanism, whose functional response is blunted both by excessive iron exposure and by removal of iron from a chelatable pool. HepG2 cells are able to limit iron accumulation upon higher or prolonged exposure to NTBI, apparently independent of the IRP mechanism.  相似文献   

7.
This paper is dedicated to the memory of our wonderful colleague Professor Alfredo Colonna, who passed away the same day of its acceptance. Fatty liver accumulation, inflammatory process and insulin resistance appear to be crucial in non-alcoholic fatty liver disease (NAFLD), nevertheless emerging findings pointed an important role also for iron overload. Here, we investigate the molecular mechanisms of hepatic iron metabolism in the onset of steatosis to understand whether its impairment could be an early event of liver inflammatory injury. Rats were fed with control diet or high fat diet (HFD) for 5 or 8 weeks, after which liver morphology, serum lipid profile, transaminases levels and hepatic iron content (HIC), were evaluated. In liver of HFD fed animals an increased time-dependent activity of iron regulatory protein 1 (IRP1) was evidenced, associated with the increase in transferrin receptor-1 (TfR1) expression and ferritin down-regulation. Moreover, ferroportin (FPN-1), the main protein involved in iron export, was down-regulated accordingly with hepcidin increase. These findings were indicative of an increased iron content into hepatocytes, which leads to an increase of harmful free-iron also related to the reduction of hepatic ferritin content. The progressive inflammatory damage was evidenced by the increase of hepatic TNF-α, IL-6 and leptin, in parallel to increased iron content and oxidative stress. The major finding that emerged of this study is the impairment of iron homeostasis in the ongoing and sustaining of liver steatosis, suggesting a strong link between iron metabolism unbalance, inflammatory damage and progression of disease.  相似文献   

8.
9.
Diabetes mellitus is associated with altered iron homeostasis in both human and animal diabetic models. Iron is a metal oxidant capable of generating reactive oxygen species (ROS) and has been postulated to contribute to diabetic nephropathy. Two proteins involved in iron metabolism that are expressed in the kidney are the divalent metal transporter, DMT1 (Slc11a2), and the Transferrin Receptor (TfR). Thus, we investigated whether renal DMT1 or TfR expression is altered in diabetes, as this could potentially affect ROS generation and contribute to diabetic nephropathy. Rats were rendered diabetic with streptozotocin (STZ-diabetes) and renal DMT1 and TfR expression studied using semi-quantitative immunoblotting and immunofluorescence. In STZ-diabetic Sprague-Dawley rats, renal DMT1 expression was significantly reduced and TfR expression increased after 2 weeks. DMT1 downregulation was observed in both proximal tubules and collecting ducts. Renal DMT1 expression was also decreased in Wistar rats following 12 weeks of STZ-diabetes, an effect that was fully corrected by insulin-replacement but not by cotreatment with the aldose reductase inhibitor, sorbinil. Increased renal TfR expression was also observed in STZ-diabetic Wistar rats together with elevated cellular iron accumulation. Together these data demonstrate renal DMT1 downregulation and TfR upregulation in STZ-diabetes. Whilst the consequence of altered DMT1 expression on renal iron handling and oxidant damage remains to be determined, the attenuation of the putative lysosomal iron exit pathway in proximal tubules could potentially explain lysosomal iron accumulation reported in human diabetes and STZ-diabetic animals.  相似文献   

10.
Excess capacity of the iron regulatory protein system   总被引:4,自引:0,他引:4  
Iron regulatory proteins (IRP1 and IRP2) are master regulators of cellular iron metabolism. IRPs bind to iron-responsive elements (IREs) present in the untranslated regions of mRNAs encoding proteins of iron storage, uptake, transport, and export. Because simultaneous knockout of IRP1 and IRP2 is embryonically lethal, it has not been possible to use dual knockouts to explore the consequences of loss of both IRP1 and IRP2 in mammalian cells. In this report, we describe the use of small interfering RNA to assess the relative contributions of IRP1 and IRP2 in epithelial cells. Stable cell lines were created in which either IRP1, IRP2, or both were knocked down. Knockdown of IRP1 decreased IRE binding activity but did not affect ferritin H and transferrin receptor 1 (TfR1) expression, whereas knockdown of IRP2 marginally affected IRE binding activity but caused an increase in ferritin H and a decrease in TfR1. Knockdown of both IRPs resulted in a greater reduction of IRE binding activity and more severe perturbation of ferritin H and TfR1 expression compared with single IRP knockdown. Even though the knockdown of IRP-1, IRP-2, or both was efficient, resulting in nondetectable protein and under 5% of wild type levels of mRNA, all stable knockdowns retained an ability to modulate ferritin H and TfR1 appropriately in response to iron challenge. However, further knockdown of IRPs accomplished by transient transfection of small interfering RNA in stable knockdown cells completely abolished the response of ferritin H and TfR1 to iron challenge, demonstrating an extensive excess capacity of the IRP system.  相似文献   

11.
Patients with chronic hepatitis C virus (HCV) infection frequently develop systemic iron overload, which exacerbates morbidity. Nevertheless, iron inhibits HCV replication in cell culture models and thereby exerts antiviral activity. We hypothesized that the cellular iron status is crucial for the establishment of HCV infection. We show that HCV infection of permissive Huh7.5.1 hepatoma cells promotes an iron deficient phenotype. Thus, HCV leads to increased iron regulatory protein (IRP) activity, accumulation of IRP2 and suppression of transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) in the host. These data suggest that HCV regulates cellular iron levels to bypass iron-mediated inhibition in viral replication.  相似文献   

12.
13.
Chronic exposure to low doses of arsenite causes transformation of human osteogenic sarcoma (HOS) cells. Although oxidative stress is considered important in arsenite-induced cell transformation, the molecular and cellular mechanisms by which arsenite transforms human cells are still unknown. In the present study, we investigated whether altered iron homeostasis, known to affect cellular oxidative stress, can contribute to the arsenite-mediated cell transformation. Using arsenite-induced HOS cell transformation as a model, it was found that total iron levels are significantly higher in transformed HOS cells in comparison to parental control HOS cells. Under normal iron metabolism conditions, iron homeostasis is tightly controlled by inverse regulation of ferritin and transferrin receptor (TfR) through iron regulatory proteins (IRP). Increased iron levels in arsenite transformed cells should theoretically lead to higher ferritin and lower TfR in these cells than in controls. However, the results showed that both ferritin and TfR are decreased, apparently through two different mechanisms. A lower ferritin level in cytoplasm was due to the decreased mRNA in the arsenite-transformed HOS cells, while the decline in TfR was due to a lowered IRP-binding activity. By challenging cells with iron, it was further established that arsenite-transformed HOS cells are less responsive to iron treatment than control HOS cells, which allows accumulation of iron in the transformed cells, as exemplified by significantly lower ferritin induction. On the other hand, caffeic acid phenethyl ester (CAPE), an antioxidant previously shown to suppress As-mediated cell transformation, prevents As-mediated ferritin depletion. In conclusion, our results suggest that altered iron homeostasis contributes to arsenite-induced oxidative stress and, thus, may be involved in arsenite-mediated cell transformation.  相似文献   

14.
15.
Hereditary hemochromatosis type 3 is an iron (Fe)-overload disorder caused by mutations in transferrin receptor 2 (TfR2). TfR2 is expressed highly in the liver and regulates Fe metabolism. The aim of this study was to investigate duodenal Fe absorption and hepatic Fe uptake in a TfR2 (Y245X) mutant mouse model of hereditary hemochromatosis type 3. Duodenal Fe absorption and hepatic Fe uptake were measured in vivo by 59Fe-labeled ascorbate in TfR2 mutant mice, wild-type mice, and Fe-loaded wild-type mice (2% dietary carbonyl Fe). Gene expression was measured by real-time RT-PCR. Liver nonheme Fe concentration increased progressively with age in TfR2 mutant mice compared with wild-type mice. Fe absorption (both duodenal Fe uptake and transfer) was increased in TfR2 mutant mice compared with wild-type mice. Likewise, expression of genes participating in duodenal Fe uptake (Dcytb, DMT1) and transfer (ferroportin) were increased in TfR2 mutant mice. Nearly all of the absorbed Fe was taken up rapidly by the liver. Despite hepatic Fe loading, hepcidin expression was decreased in TfR2 mutant mice compared with wild-type mice. Even when compared with Fe-loaded wild-type mice, TfR2 mutant mice had increased Fe absorption, increased duodenal Fe transport gene expression, increased liver Fe uptake, and decreased liver hepcidin expression. In conclusion, despite systemic Fe loading, Fe absorption and liver Fe uptake were increased in TfR2 mutant mice in association with decreased expression of hepcidin. These findings support a model in which TfR2 is a sensor of Fe status and regulates duodenal Fe absorption and liver Fe uptake.  相似文献   

16.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

17.
Studies have shown that men and women exhibit significant differences regarding iron status. However, the effects of sex on iron accumulation and distribution are not well established. In this study, female and male Sprague-Dawley rats were killed at 4 months of age. Blood samples were analyzed to determine the red blood cell (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct), and mean red blood cell volume (MCV). The serum samples were analyzed to determine the concentrations of serum iron (SI), transferrin saturation (TS), ferritin, soluble transferrin receptor (sTfR), and erythropoietin (EPO). The tissue nonheme iron concentrations were measured in the liver, spleen, bone marrow, kidney, heart, gastrocnemius, duodenal epithelium, lung, pallium, cerebellum, hippocampus, and striatum. Hepatic hepcidin expression was detected by real-time PCR analysis. The synthesis of ferroportin 1 (FPN1) in the liver, spleen, kidney, and bone marrow was determined by Western blot analysis. The synthesis of duodenal cytochrome B561 (DcytB), divalent metal transporter 1 (DMT1), FPN1, hephaestin (HP) in the duodenal epithelium was also measured by Western blot analysis. The results showed that the RBC, Hb, and Hct in male rats were higher than those in female rats. The SI and plasma TS levels were lower in male rats than in female rats. The levels of serum ferritin and sTfR were higher in male rats than in female rats. The EPO levels in male rats were lower than that in female rats. The nonheme iron contents in the liver, spleen, bone marrow, and kidney in male rats were also lower (56.7, 73.2, 60.6, and 61.4 % of female rats, respectively). Nonheme iron concentrations in the heart, gastrocnemius, duodenal epithelium, lung, and brain were similar in rats of both sexes. A moderate decrease in hepatic hepcidin mRNA content was also observed in male rats (to 56.0 % of female rats). The levels of FPN1 protein in the liver, spleen, and kidney were higher in male rats than in female rats. There was no significant change in FPN1 expression in bone marrow. Significant difference was also not found in DcytB, DMT1, FPN1, and HP protein levels in the duodenal epithelium between male and female rats. These data suggest that iron is distributed differently in male and female rats. This difference in iron distribution may be associated with the difference in the hepcidin level.  相似文献   

18.
We tested the hypothesis that oxidative stress and biological effect after ozone (O3) exposure are dependent on changes in iron homeostasis. After O3 exposure, healthy volunteers demonstrated increased lavage concentrations of iron, transferrin, lactoferrin, and ferritin. In normal rats, alterations of iron metabolism after O3 exposure were immediate and preceded the inflammatory influx. To test for participation of this disruption in iron homeostasis in lung injury following O3 inhalation, we exposed Belgrade rats, which are functionally deficient in divalent metal transporter 1 (DMT1) as a means of iron uptake, and controls to O3. Iron homeostasis was disrupted to a greater extent and the extent of injury was greater in Belgrade rats than in control rats. Nonheme iron and ferritin concentrations were higher in human bronchial epithelial (HBE) cells exposed to O3 than in HBE cells exposed to filtered air. Aldehyde generation and IL-8 release by the HBE cells was also elevated following O3 exposure. Human embryonic kidney (HEK 293) cells with elevated expression of a DMT1 construct were exposed to filtered air and O3. With exposure to O3, elevated DMT1 expression diminished oxidative stress (i.e., aldehyde generation) and IL-8 release. We conclude that iron participates critically in the oxidative stress and biological effects after O3 exposure.  相似文献   

19.
Iron regulatory proteins (IRPs) are cytoplasmic mRNA binding proteins involved in intracellular regulation of iron homeostasis. IRPs regulate expression of ferritin and transferrin receptor at the mRNA level by interacting with a conserved RNA structure termed the iron-responsive element (IRE). This concordant regulation of transferrin receptors and ferritin is designed so a cell can obtain iron when it is needed, and sequester iron when it is in excess. However, we have reported that iron accumulates in the brain in Alzheimer's disease without a concomitant increase in ferritin. An increase in iron without proper sequestration can increase the vulnerability of cells to oxidative stress. Oxidative stress is a component of many neurological diseases including Alzheimer's. We hypothesized that alterations in the IRP/IRE interaction could be the site at which iron mismanagement occurs in the Alzheimer's brains. In this report we demonstrate that in normal human brain extracts, the IRP is detected as a double IRE/IRP complex by RNA band shift assay, but in 2 of 6 Alzheimer's brain (AD) extracts examined a single IRE/IRP complex was obtained. Furthermore, the mobility of the single IRE/IRP complex in Alzheimer's brain extracts is decreased relative to the double IRE/IRP complex. Western blot and RNA band super shift assay demonstrate that IRP1 is involved in the formation of the single IRE/IRP complex. In vitro analyses suggest that the stability of the doublet complex and single AD complex are different. The single complex from the AD brain are more stable. A more stable IRE/IRP complex in the AD brain could increase stability of the transferrin receptor mRNA and inhibit ferritin synthesis. At the cellular level, the outcome of this alteration in the molecular regulatory mechanism would be increased iron accumulation without an increase in ferritin; identical to the observation we reported in AD brains. The appearance of the single IRE/IRP complex in Alzheimer's brain extracts is associated with relatively high endogenous ribonuclease activity. We propose that elevated RNase activity is one mechanism by which the iron regulatory system becomes dysfunctional.  相似文献   

20.
The love-hate relationship between iron and living matter has generated mechanisms to maintain iron concentration in a narrow range, above and below which deleterious effects occur. At the cellular level, iron homeostasis is accomplished by the activity of the IRP proteins, which, under conditions of iron depletion, up-regulate the expression of the iron acquisition proteins TfR and DMT1. It has been shown that hydrogen peroxide activates IRP1 and that this activation mediates a potentially harmful increase in cell iron uptake. Here we show that IRP1 activity is also induced by iron-mediated oxidative stress. When cells were incubated with up to 20 M of iron, a typical decrease in IRP1 and IRP2 activity was observed. Interestingly, when iron was further increased to 40 or 80 M, IRP1 was reactivated in three of the four different cell lines tested, i.e., Caco-2 cells, N2A cells and HepG2 cells. In the fourth cell line (K562) IRP1 activity did not increase, but neither did it decrease. This response to iron was largely abrogated when the antioxidant N-acetyl cysteine was added along with iron to the culture medium. Thus, the effect of iron was mediated by oxidative stress. Increases in IRP1 activity were accompanied by increases in cell iron uptake, an indication that the activated IRP1 was functional in the activation of iron uptake. Hence, this iron-induced iron uptake feedback loop results in the increase of intracellular iron and increased oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号