首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discharge of protein from slices of rat exorbital lacrimal gland was stimulated by 10?5 M carbachol. This response was blocked by 10?4 M atropine or by the omission of extracellular calcium. In the latter case, secretion could be restored by the reintroduction of calcium to the medium. Carbachol (10?5 M) also stimulated the release of 86Rb (a marker for potassium) from the slices. This effect was completely blocked by 10?4 M atropine. The initial transient release of 86Rb was only partially inhibited by Ca removal, but the later sustained phase of release was completely blocked. As with protein secretion, this effect of Ca removal could be reversed by re-introduction of Ca to the medium. It is concluded that activation of cholinergic receptors in the lacrimal gland stimulates protein discharge and increases potassium permeability by mechanisms utilizing extracellular calcium ions.  相似文献   

2.
The effect of PGE2 on catecholamine release from human adrenal medulla and phaechromocytoma was studied in slices incubated . In each of 3 normal human adrenal medullae PGE2 (10−7 M) caused a significant inhibition of the release of catecholamines in incubation. In each of 3 phaeochromocytomas studied PGE2(10−7 M) caused a significant increase of catecholamine release in incubation. The possible relevance of this mechanism to the regulation of catecholamine release in phaeochromocytoma is discussed.  相似文献   

3.
Cultured bovine adrenal medulla cells have been shown to contain several different ion channels (Na+, Ca2+, acetylcholine receptor regulated) whose activation leads to the secretion of catecholamines. The pharmacology of these ion channels and their interactions during secretion have been examined. The mechanisms of agonist-induced calcium influx are of particular interest since this is an early obligatory event during secretion from the adrenal medulla. Data obtained on catecholamine release and 45Ca2+ uptake indicate that both voltage-dependent and voltage-independent calcium influx mechanisms operate in cultured bovine adrenal medulla cells. The significance of these results in understanding the mechanism of action of the physiological stimulus acetylcholine (Ach) will be discussed. The alkaloid channel neurotoxins D-600, batrachotoxin, veratridine, and aconitine were shown to exert a noncompetitive inhibitory effect on Ach-induced ion flux in adrenal medulla cells, presumably through an interaction with the nicotinic receptor regulated channel. Lipid-soluble neurotoxins may interact with multiple ion channels in nerve and muscle membrane.  相似文献   

4.
Calcium binding by subcellular fractions of bovine adrenal medulla   总被引:2,自引:0,他引:2  
Significantly more calcium per gram protein was found in a relatively pure granule fraction isolated from fresh bovine adrenal medulla than in predominantly mitochondrial fractions isolated from the same tissue. Sixty-four and 55% of the calcium associated with chromaffin granule and mitochondrial fractions, respectively, was released into the supernatant upon lowering the tonicity of the medium. The per cent calcium released by this procedure was significantly greater for granules than for mitochondria (p < 0.05). The amount of calcium per gram protein released into the supernatant also was greater in granule fractions than in mitochondrial fractions (p < 0.05). These data, coupled with a previous report that 10?3 M EDTA does not markedly decrease the calcium content of whole granules, indicate that the excess calcium of the granule fractions relative to the mitochondrial fractions is maintained within the particles of that fraction. The functional significance of the relatively large amount of calcium in chromaffin granules is not clear. The presence of 150 mM sodium chloride or potassium chloride decreases calcium binding by granule or mitochondrial fragments incubated in 2.2 mM calcium chloride in 0.2 M Tris, pH 7, by about 50%. EDTA, 10?3 M, removes all but a small residual of the calcium associated with the granule or mitochondrial fragments whereas lowering the concentration of Tris increases calcium binding to about the same extent in both these subcellular fractions. The calcium-binding properties of granule and mitochondrial fragments therefore appear to be quantitatively and qualitatively similar. Inhibition of catecholamine release by relatively high concentrations of sodium may be explained by competitive inhibition of calcium binding. Calcium binding by granule fragments decreases with an increase in hydrogen ion concentration.  相似文献   

5.
Spontaneously hypertensive rats (SHR) are widely used as model to investigate the pathophysiological mechanisms of essential hypertension. Catecholamine plasma levels are elevated in SHR, suggesting alterations of the sympathoadrenal axis. The residual hypertension in sympathectomized SHR is reduced after demedullation, suggesting a dysfunction of the adrenal medulla. Intact adrenal glands exposed to acetylcholine or high K+ release more catecholamine in SHR than in normotensive Wistar Kyoto (WKY) rats, and adrenal chromaffin cells (CCs) from SHR secrete more catecholamines than CCs from WKY rats. Since Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers exocytosis, alterations in the functional properties of these channels might underlie the enhanced catecholamine release in SHR. This study compares the electrophysiological properties of VGCC from CCs in acute adrenal slices from WKY rats and SHR at an early stage of hypertension. No significant differences were found in the macroscopic Ca2+ currents (current density, IV curve, voltage dependence of activation and inactivation, kinetics) between CCs of SHR and WKY rats, suggesting that Ca2+ entry through VGCC is not significantly different between these strains, at least at early stages of hypertension. Ca2+ buffering, sequestration and extrusion mechanisms, as well as Ca2+ release from intracellular stores, must now be evaluated to determine if alterations in their function can explain the enhanced catecholamine secretion reported in CCs from SHR.  相似文献   

6.
The effect of carbamylcholine and the calcium ionophore A23187 on catecholamine release and intracellular free calcium, [Ca2+]i, in bovine adrenal chromaffin cells was determined. At 10–4M carbamylcholine maximal release occurred with an accompanying increase i n [Ca2+]i from a basal level of 168 nM to less than 300 nM. An increase in [Ca2+]i of a similar magnitude was found following challenge with 40 nM A23187. However, in this case, no catecholamine release occurred. These results suggest that stimulation of secretion from chromaffin cells by carbamylcholine may involve additional triggers which stimulate secretion at low [Ca2+]i.  相似文献   

7.
Vasoactive intestinal peptide (VIP) was found in the adrenal gland of ovine fetuses at 130-135 days gestation and was shown to stimulate catecholamine secretion. VIP was demonstrated by immunocytochemistry using the indirect antibody-enzyme method. VIP-immunoreactive nerve fibers were observed in the capsule, zona glomerulosa and inner layer of the cortex as well as in the medulla; furthermore small clusters of VIP-containing cell bodies were found at the corticomedullary border. To study the direct effect of VIP on catecholamine release, fetal adrenal medulla was dispersed into single cells and incubated in vitro with VIP for 6 hours. Catecholamine release into the medium was measured at 1, 3 and 6 hours. At 6 hours of incubation, VIP stimulated total catecholamine release from fetal adrenomedullary cells in a dose-dependent manner at concentrations ranging from 10(-8) to 10(-4) M. The release of norepinephrine and epinephrine, but not dopamine, was significantly enhanced. The presence of VIP in the fetal adrenal cortex and medulla, and the ability of VIP to stimulate catecholamine release from fetal adrenomedullary cells in vitro suggest that VIP may be an important modulator of medullary catecholamine secretion during fetal life.  相似文献   

8.
We reported earlier that adenine nucleotides and adenosine inhibit acetylcholine-induced catecholamine secretion from bovine adrenal medulla chromaffin cells. In this article, we used an adenosine analogue, N6-L-phenylisopropyladenosine (PIA), to study the mechanism underlying inhibition of catecholamine secretion by adenosine. PIA inhibits secretion induced by a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium, or by elevated external K+. The half-maximal effect on 1,1-dimethyl-4-phenylpiperazinium-induced secretion occurred at approximately 5 x 10(-5) M. The inhibition is immediate and reversible. Fura-2 measurements of cytosolic free Ca2+ indicate that PIA inhibits Ca2+ elevation caused by stimulation; measurements of 45Ca2+ influx show that PIA inhibits uptake of Ca2+. PIA does not inhibit calcium-evoked secretion from digitonin-permeabilized cells, nor does PIA cause any significant change in the dependence of catecholamine secretion on calcium concentration. These data suggest that inhibition by PIA occurs at the level of the voltage-sensitive calcium channel.  相似文献   

9.
Abstract: Differential adrenaline (Ad) and noradrenaline (NA) secretions evoked by secretagogues were investigated using digitonin-permeabilized adrenal chromaffin cells, cultured adrenal chromaffin cells, and perfused adrenal glands of the ox. In digitonin-permeabilized cells, Ca2+ (0.8-160 μM) caused a concentration-dependent increase in catecholamine secretion, which was characterized by a predominance of NA over Ad secretion. Acetylcholine (10-1,000 μM), high K+ (14-56 μM), and bradykinin (0.1-1,000 μM) all were confirmed to induce the release of more NA than Ad at all concentrations used. There was no apparent difference in the ratios of NA/Ad between Ca2+-induced catecholamine secretion from digitonin-permeabilized cells and those induced by secretagogues from cultured cells. Qualitatively the same result was obtained in the secretory responses to acetylcholine and high K+ in perfused adrenal glands. These results indicate that the effectiveness of Ca2+ for catecholamine secretion is higher in the secretory apparatus of NA cells than in that of Ad cells of the bovine adrenal medulla. This may be one of the reasons why the secretagogues cause a predominance of NA secretion over Ad secretion in the bovine adrenal medulla.  相似文献   

10.
Carbamylcholine-stimulated catecholamine release from adrenal chromaffin cells was completely inhibited by pretreatment of the cells for 10 min with 1 μM calmidazolium. Catecholamine release due to 55 mM K+ and ionophore A23187 was also inhibited by calmidazolium but less effectively than release due to carbamylcholine. Inhibition of release appeared to be due to an effect of calmidazolium on a step distal to Ca2+ entry, since the carbamylcholine-stimulated rise in the concentration of intracellular free calcium, monitored using quin-2, was unaffected by calmidazolium. The possibility was considered that calmidazolium inhibited secretion through an effect on protein kinase C rather than calmodulin. However, the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), had no demonstrable effect on catecholamine release, arguing against a significant role for protein kinase C in secretion from adrenal chromaffin cells. These results give further support to the notion that calmodulin plays a role in the secretory process in chromaffin cells.  相似文献   

11.
Adenosine was shown to inhibit norepinephrine (NE) release from sympathetic nerve endings. The purpose of this study was to examine whether endogenous adenosine restrains NE and epinephrine release from the adrenal medulla. The effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl) xanthine (DPSPX), on epinephrine and NE release induced by intravenous administration of insulin in conscious rats were examined. Plasma catecholamines were measured by HPLC with an electrochemical detector. DPSPX significantly increased plasma catecholamine in both control rats and rats treated with insulin. The effect of DPSPX on plasma catecholamine was significantly greater in rats treated with insulin. Additional experiments were performed in adrenalectomized rats to investigate the contribution of the adrenal medulla to the effect of DPSPX on plasma catecholamine. The effect of DPSPX and insulin on epinephrine in adrenalectomized rats was significantly reduced compared with that of the controls. Finally, we tested whether endogenous adenosine restrains catecholamine secretion partially through inhibiting the renin-angiotensin system. The effect of DPSPX on plasma catecholamine in rats pretreated with captopril (an angiotensin-converting enzyme inhibitor) was reduced. These results demonstrate that under basal physiological conditions, endogenous adenosine tonically inhibits catecholamine secretion from the adrenal medulla, and this effect is augmented when the sympathetic system is stimulated. The effect of endogenous adenosine on catecholamine secretion from the adrenal medulla is achieved partially through the inhibitory effect of adenosine on the renin-angiotensin system.  相似文献   

12.
The β subunits of voltage-dependent calcium channels are known to modify calcium channel currents through pore-forming α1 subunits. The β3 subunit is expressed in the adrenal gland and participates in forming various calcium channel types. We performed a series of experiments in β3-null mice to determine the role of the β3 subunit in catecholamine release from the adrenal chromaffin system.Protein levels of N-type channel forming CaV2.2 and L-type forming CaV1.2 decreased. The β3-null mice showed a decreased baroreflex, suggesting decreased sympathetic tonus, whereas plasma catecholamine levels did not change. Pulse-voltage stimulation revealed significantly increased amperometrical currents in β3-null mice, while patch-clamp recordings showed a significant reduction in Ca2+-currents due to reduced L- and N-type currents, indicating facilitated exocytosis. A biochemical analysis revealed increased InsP3 production.In conclusion, our results indicate the importance of the β3 subunit in determining calcium channel characteristics and catecholamine release in adrenal chromaffin cells.  相似文献   

13.
Low voltage-activated T-type Cav3.2 calcium channels are expressed in neurosecretory chromaffin cells of the adrenal medulla. Previous studies have shown that naïve adrenal chromaffin cells express a nominal Cav3.2-dependent conductance. However, Cav3.2 conductance is up-regulated following chronic hypoxia or long term exposure to cAMP analogs. Thus, although a link between chronic stressors and up-regulation of Cav3.2 exists, there are no reports testing the specific role of Cav3.2 channels in the acute sympathoadrenal stress response. In this study, we examined the effects of acute sympathetic stress on T-type Cav3.2 calcium influx in mouse chromaffin cells in situ. Pituitary adenylate cyclase-activating peptide (PACAP) is an excitatory neuroactive peptide transmitter released by the splanchnic nerve under elevated sympathetic activity to stimulate the adrenal medulla. PACAP stimulation did not evoke action potential firing in chromaffin cells but did cause a persistent subthreshold membrane depolarization that resulted in an immediate and robust Ca2+-dependent catecholamine secretion. Moreover, PACAP-evoked secretion was sensitive to block by nickel chloride and was acutely inhibited by protein kinase C blockers. We utilized perforated patch electrophysiological recordings conducted in adrenal tissue slices to investigate the mechanism of PACAP-evoked calcium entry. We provide evidence that stimulation with exogenous PACAP and native neuronal stress stimulation both lead to a protein kinase C-mediated phosphodependent recruitment of a T-type Cav3.2 Ca2+ influx. This in turn evokes catecholamine release during the acute sympathetic stress response.  相似文献   

14.
It had previously been thought that muscarinic cholinergic receptors utilize an influx of extracellular calcium for activation of adrenomedullary catecholamine secretion. However, it has recently been demonstrated that muscarinic receptors on isolated adrenal chromaffin cells can elevate cytosolic free calcium levels in a manner independent of extracellular calcium, presumably by mobilizing intracellular calcium stores. We now demonstrate that muscarinic receptor-mediated catecholamine secretion from perfused rat adrenal glands can occur under conditions of extracellular calcium deprivation that are sufficient to block both nicotine- and electrically stimulated release. Three independent conditions of extracellular calcium deprivation were used: nominally calcium-free perfusion solution (no calcium added), EGTA-containing calcium-free perfusion solution, and perfusion solution containing the calcium channel blocker verapamil. Secretion was evoked from the perfused glands by either transmural electrical stimulation or injection of nicotine or muscarine into the perfusion stream. Each condition of calcium deprivation was able to block nicotine- and electrically stimulated catecholamine release in an interval that left muscarine-evoked release largely unaffected. The above results demonstrate that muscarine-evoked catecholamine secretion from perfused rat adrenal glands can occur in the absence of extracellular calcium, presumably by mobilization of intracellular calcium. The latter may be due to muscarinic receptor-mediated generation of inositol trisphosphate.  相似文献   

15.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   

16.
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.  相似文献   

17.
In the ovine fetus, the adrenal medulla activity secretes catecholamines into the circulation under normal and stress conditions. Little is known regarding the endocrine regulation of adrenal medullary catecholamine secretion in the fetus. The present study was undertaken to investigate the direct effects of the hormones prolactin, angiotensin II and cortisol on catecholamine release from fetal adrenal medulla, and to determine whether the effect of the hormones change during development into adulthood. Adrenal medulla from fetal, newborn and adult pregnant sheep was collected, dispersed into single cells and plated. Following preincubation, the cells were treated with ovine prolactin or angiotensin II at 8, 40 and 200 micrograms/ml; or cortisol at 10(-8), 10(-7) and 10(-6)M for 24 h. Catecholamine release into the medium were measured at 3, 6, 12 and 24 h. Ovine prolactin at 8 to 200 micrograms/ml significantly stimulated the release of total catecholamines after 12 h of incubation. The effect of prolactin was dose-dependent such that the magnitude of the response increased and the response time shortened with increasing concentrations of prolactin. In addition, the release of all three catecholamines--dopamine, norepinephrine and epinephrine--was significantly elevated. In newborn cells, only the highest concentration of 200 micrograms/ml ovine prolactin stimulated total catecholamine release at 6 h and 12 h, with significant increases of the three catecholamines at 12 h. In maternal cells, stimulation of catecholamine release was observed also with the highest concentration of prolactin tested (200 micrograms/ml) and after 12 h of incubation, when only the release of epinephrine was significantly enhanced by 324%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The functional integrity of adrenal chromaffin storage vesicles was studied in the perfused rat adrenal gland subjected to intense exocytosis. Continuous perfusion with 55 mM K+-Krebs solution produced a large and uninterrupted secretion of catecholamines. Total amounts secreted within 45 min were 4.66 micrograms and represented almost 30% of the total tissue catecholamine content. If perfusion with excess K+ was extended to 90 min, the secretion increased further to 5.76 micrograms. Despite such a large secretory response, the catecholamine content of the K+-stimulated adrenal medulla was comparable to that of unstimulated control, suggesting an enhanced resynthesis to maintain the normal levels. Pretreatment of rats with alpha-methyl-p-tyrosine, and including this agent in the perfusion medium during stimulation with K+, caused a marked reduction in catecholamine content. The degree of depletion depended on the extent of stimulation with K+ (45% in 45 min and 60% in 90 min). Although depleted catecholamine stores did not show spontaneous recovery in 2 h, inclusion of tyrosine, L-3,4-dihydroxyphenylalanine or dopamine (but not epinephrine or norepinephrine) completely restored the catecholamine content of previously depleted adrenal medulla. Repletion achieved by tyrosine was time dependent (evident in 30 min and maximum in 2 h) and blocked by alpha-methyl-p-tyrosine but not by calcium deprivation. The ratio of epinephrine to norepinephrine remained constant during various stages of the experiment, suggesting both types of vesicles were equally affected by different treatments. The secretory response (10 Hz for 30 s) was unaffected even though tissue catecholamine stores were significantly depleted (50%). In summary, we have demonstrated that catecholamine content of the isolated perfused adrenal gland can be reduced by stimulation of exocytotic secretion in the presence of tyrosine hydroxylase inhibitor. Since the depleted stores can be fully refilled by synthesis of catecholamines from its precursors, it is suggested that chromaffin vesicles may be reutilized for the purpose of synthesis, storage, and secretion of adrenal medullary hormones.  相似文献   

19.
Abstract— Suspensions of isolated adrenal cells were prepared by digesting hamster adrenal glands with collagenase, and the secretion of catecholamine from these cells was studied. Acetylcholine (ACh) produces a dose-dependent increase in catecholamine secretion; half-maximal secretion is produced by 3 μm -ACh, and maximal secretion by 100 μm -ACh. The cholinergic receptor in these cells appears to be nicotinic, since catecholamine secretion is stimulated by the nicotinic agonists nicotine and dimeth-ylphenylpiperaziniurn, but not by the muscarinic agonists pilocarpine or oxotremorine. ACh-induced catecholamine secretion is inhibited by hexamethonium, tubocurarine, and atropine, but is not inhibited by α-bungarotoxin. ACh-induced catecholamine secretion is dependent upon the presence of extracellular Ca2+, and appears to occur by exocytosis, since the release of catecholamine is accompanied by the release of dopamine β-monooxygenase, but not of lactate dehydrogenase. These biochemical studies complement the morphological evidence for exocytosis in hamster adrenal glands, and indicate that catecholamine secretion from hamster chromaffin cells is similar to that from chromaffin cells of other species.  相似文献   

20.
Expression of tyrosine receptor kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), is markedly elevated in the adrenal medulla during immobilization stress. Catecholamine release was confirmed in vitro by stimulating chromaffin cells with recombinant BDNF. We investigated the role of TrkB and the localization of BDNF in the adrenal gland during immobilization stress for 60 min. Blood catecholamine levels increased after stimulation with TrkB expressed in the adrenal medulla during 60‐min stress; however, blood catecholamine levels did not increase in adrenalectomized rats. Furthermore, expression of BDNF mRNA and protein was detected in the adrenal medulla during 60‐min stress. Similarly, in rats undergoing sympathetic nerve block with propranolol, BDNF mRNA and protein were detected in the adrenal medulla during 60‐min stress. These results suggest that signal transduction of TrkB in the adrenal medulla evokes catecholamine release. In addition, catecholamine release was evoked by both the hypothalamic–pituitary–adrenal axis and autocrine signaling by BDNF in the adrenal gland. BDNF–TrkB interaction may play a role in a positive feedback loop in the adrenal medulla during immobilization stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号