首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.  相似文献   

2.
Activation of Ca2+ release channels/ryanodine receptors (RyR) by the inward Ca2+ current (I(Ca)) gives rise to Ca(2+)-induced Ca2+ release (CICR), the amplifying Ca2+ signaling mechanism that triggers contraction of the heart. CICR, in theory, is a high-gain, self-regenerating process, but an unidentified mechanism stabilizes it in vivo. Sorcin, a 21.6 kDa Ca(2+)-binding protein, binds to cardiac RyRs with high affinity and completely inhibits channel activity. Sorcin significantly inhibits both the spontaneous activity of RyRs in quiescent cells (visualized as Ca2+ sparks) and the I(Ca)-triggered activity of RyRs that gives rise to [Ca2+]i transients. Since sorcin decreases the amplitude of the [Ca2+]i transient without affecting the amplitude of I(Ca), the overall effect of sorcin is to reduce the "gain" of excitation-contraction coupling. Immunocytochemical staining shows that sorcin localizes to the dyadic space of ventricular cardiac myocytes. Ca2+ induces conformational changes and promotes translocation of sorcin between soluble and membranous compartments, but the [Ca2+] required for the latter process (ED50 = approximately 200 microM) appears to be reached only within the dyadic space. Thus, sorcin is a potent inhibitor of both spontaneous and I(Ca)-triggered RyR activity and may play a role in helping terminate the positive feedback loop of CICR.  相似文献   

3.
In cardiac ventricular myocytes, events crucial to excitation-contraction coupling take place in spatially restricted microdomains known as dyads. The movement and dynamics of calcium (Ca2+) ions in the dyad have often been described by assigning continuously valued Ca2+ concentrations to one or more dyadic compartments. However, even at its peak, the estimated number of free Ca2+ ions present in a single dyad is small (approximately 10-100 ions). This in turn suggests that modeling dyadic calcium dynamics using laws of mass action may be inappropriate. In this study, we develop a model of stochastic molecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) that describes: a), known features of dyad geometry, including the space-filling properties of key dyadic proteins; and b), movement of individual Ca2+ ions within the dyad, as driven by electrodiffusion. The model enables investigation of how local Ca2+ signaling is influenced by dyad structure, including the configuration of key proteins within the dyad, the location of Ca2+ binding sites, and membrane surface charges. Using this model, we demonstrate that LCC-RyR2 signaling is influenced by both the stochastic dynamics of Ca2+ ions in the dyad as well as the shape and relative positioning of dyad proteins. Results suggest the hypothesis that the relative placement and shape of the RyR2 proteins helps to "funnel" Ca2+ ions to RyR2 binding sites, thus increasing excitation-contraction coupling gain.  相似文献   

4.
5.
Ryanodine receptors/Ca2+-release channels (RyR2) from the sarcoplasmic reticulum (SR) provide the Ca2+ required for contraction at each cardiac twitch. RyR2 are regulated by a variety of proteins, including the immunophilin FK506 binding protein (FKBP12.6). FKBP12.6 seems to be important for coupled gating of RyR2 and its deficit and alteration may be involved in heart failure. The role of FKBP12.6 on Ca2+ release has not been analyzed directly, but rather it was inferred from the effects of immunophilins, such us FK506 and rapamycin, which, among other effects, dissociates FKBP12.6 from the RyR2. Here, we investigated directly the effects of FKBP12.6 on local (Ca2+ sparks) and global [intracellular Ca2+ concentration ([Ca2+]i) transients] Ca2+ release in single rat cardiac myocytes. The FKBP12.6 gene was transfected in single myocytes using the adenovirus technique with a reporter gene strategy based on green fluorescent protein (GFP) to check out the success of transfections. Control myocytes were transfected with only GFP (Ad-GFP). Rhod-2 was used as the Ca2+ indicator, and cells were viewed with a confocal microscope. We found that overexpression of FKBP12.6 decreases the occurrence, amplitude, duration, and width of spontaneous Ca2+ sparks. FK506 had diametrically opposed effects. However, overexpression of FKBP12.6 increased the [Ca2+]i transient amplitude and accelerated its decay in field-stimulated cells. The associated cell shortening was increased. SR Ca2+ load, estimated by rapid caffeine application, was increased. In conclusion, FKBP12.6 overexpression decreases spontaneous Ca2+ sparks but increases [Ca2+]i transients, in relation with enhanced SR Ca2+ load, therefore improving excitation-contraction coupling.  相似文献   

6.
This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 channel activity. Digoxin and actodigin increased single-channel activity at low concentrations normally associated with therapeutic plasma levels, yielding a 50% of maximal effect of approximately 0.2 nM for each agent. Channel activation by glycosides did not require MgATP and occurred only when digoxin was applied to the cytoplasmic side of the channel. Similar results were obtained in human RyR2 channels; however, neither the crude skeletal nor the purified cardiac channel was activated by glycosides. Channel activation was dependent on [Ca2+] on the luminal side of the bilayer with maximal stimulation occurring between 0.3 and 10 mM. Rat RyR2 channels were activated by digoxin only at 1 microM, consistent with the lower sensitivity to glycosides in rat heart. These results suggest a model in which RyR2 channel activation by digoxin occurs only when luminal [Ca2+] was increased above 300 microM (in the physiological range). Consequently, increasing SR load (by Na+ pump inhibition) serves to amplify SR release by promoting direct RyR2 channel activation via a luminal Ca2+-sensitive mechanism. This high-affinity effect of glycosides could contribute to increased SR Ca2+ release and might play a role in the inotropic and/or toxic actions of glycosides in vivo.  相似文献   

7.
Calstabin deficiency, ryanodine receptors, and sudden cardiac death   总被引:4,自引:0,他引:4  
Altered cardiac ryanodine receptor (RyR2) function has an important role in heart failure and genetic forms of arrhythmias. RyR2 constitutes the major intracellular Ca2+ release channel in the cardiac sarcoplasmic reticulum (SR). The peptidyl-prolyl isomerase calstabin2 (FKBP12.6) is a component of the RyR2 macromolecular signaling complex. Calstabin2 binding to RyR2 is regulated by PKA phosphorylation of Ser2809 in RyR2. PKA phosphorylation of RyR2 decreases the binding affinity for calstabin2 and increases RyR2 open probability and sensitivity to Ca2+-dependent activation. In heart failure, a majority of studies have found that RyR2 becomes chronically PKA hyper-phosphorylated which depletes calstabin2 from the channel complex. Calstabin2 dissociation causes a diastolic SR Ca2+ leak contributing to depressed intracellular Ca2+ cycling and decreased cardiac contractility. Missense mutations linked to genetic forms of exercise-induced arrhythmias and sudden cardiac death also cause decreased calstabin2-binding affinity and leaky RyR2 channels. We review the importance of calstabin2 for RyR2 function and excitation-contraction coupling, and discuss new observations that implicate dysregulation of calstabin2 binding as a central mechanism for abnormal calcium cycling in heart failure and triggered arrhythmias.  相似文献   

8.
Mechanical alternans in cardiac muscle is associated with intracellular Ca(2+) alternans. Mechanisms underlying intracellular Ca(2+) alternans are unclear. In previous experimental studies, we produced alternans of systolic Ca(2+) under voltage clamp, either by partially inhibiting the Ca(2+) release mechanism, or by applying small depolarizing pulses. In each case, alternans relied on propagating waves of Ca(2+) release. The aim of this study is to investigate by computer modeling how alternans of systolic Ca(2+) is produced. A mathematical model of a cardiac cell with 75 coupled elements is developed, with each element contains L-type Ca(2+) current, a subspace into which Ca release takes place, a cytoplasmic space, sarcoplasmic reticulum (SR) release channels [ryanodine receptor (RyR)], and uptake sites (SERCA). Interelement coupling is via Ca(2+) diffusion between neighboring subspaces via cytoplasmic spaces and network SR spaces. Small depolarizing pulses were simulated by step changes of cell membrane potential (20 mV) with random block of L-type channels. Partial inhibition of the release mechanism is mimicked by applying a reduction of RyR open probability in response to full stimulation by L-type channels. In both cases, systolic alternans follow, consistent with our experimental observations, being generated by propagating waves of Ca(2+) release and sustained through alternation of SR Ca(2+) content. This study provides novel and fundamental insights to understand mechanisms that may underlie intracellular Ca(2+) alternans without the need for refractoriness of L-type Ca or RyR channels under rapid pacing.  相似文献   

9.
Intracellular calcium transient alternans (CTA) has a recognized role in arrhythmogenesis, but its origin is not yet fully understood. Recent models of CTA are based on a steep relationship between calcium release from the sarcoplasmic reticulum (SR) and its calcium load before release. This mechanism alone, however, does not explain recent observations of CTA without diastolic SR calcium content alternations. In addition, nanoscopic imaging of calcium dynamics has revealed that the elementary calcium release units of the SR can become refractory independently of their local calcium content. Here we show using a new physiologically detailed mathematical model of calcium cycling that luminal gating of the calcium release channels (RyRs) mediated by the luminal buffer calsequestrin (CSQN) can cause CTA independently of the steepness of the release-load relationship. In this complementary mechanism, CTA is caused by a beat-to-beat alternation in the number of refractory RyR channels and can occur with or without diastolic SR calcium content alternans depending on pacing conditions and uptake dynamics. The model has unique features, in that it treats a realistic number of spatially distributed and diffusively coupled dyads, each one with a realistic number of RyR channels, and that luminal CSQN buffering and gating is incorporated based on experimental data that characterizes the effect of the conformational state of CSQN on its buffering properties. In addition to reproducing observed features of CTA, this multiscale model is able to describe recent experiments in which CSQN expression levels were genetically altered as well as to reproduce nanoscopic measurements of spark restitution properties. The ability to link microscopic properties of the calcium release units to whole cell behavior makes this model a powerful tool to investigate the arrhythmogenic role of abnormal calcium handling in many pathological settings.  相似文献   

10.
Calcium (Ca2+)-induced Ca2+ release (CICR) in cardiac myocytes exhibits high gain and is graded. These properties result from local control of Ca2+ release. Existing local control models of Ca2+ release in which interactions between L-Type Ca2+ channels (LCCs) and ryanodine-sensitive Ca2+ release channels (RyRs) are simulated stochastically are able to reconstruct these properties, but only at high computational cost. Here we present a general analytical approach for deriving simplified models of local control of CICR, consisting of low-dimensional systems of coupled ordinary differential equations, from these more complex local control models in which LCC-RyR interactions are simulated stochastically. The resulting model, referred to as the coupled LCC-RyR gating model, successfully reproduces a range of experimental data, including L-Type Ca2+ current in response to voltage-clamp stimuli, inactivation of LCC current with and without Ca2+ release from the sarcoplasmic reticulum, voltage-dependence of excitation-contraction coupling gain, graded release, and the force-frequency relationship. The model does so with low computational cost.  相似文献   

11.
Ca(2+) mediates the functional coupling between L-type Ca(2+) channel (LTCC) and sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca(2+)-induced Ca(2+)-release (CICR) mechanism triggered by Ca(2+) influx, but also as the retrograde Ca(2+)-dependent inactivation (CDI) of LTCC, which depends on both Ca(2+) permeating through the LTCC itself and on SR Ca(2+) release through the RyR. This latter effect has been suggested to rely on local rather than global Ca(2+) signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca(2+) leak, we evidence here that increased occurrence of the discrete local SR Ca(2+) releases through the RyRs (Ca(2+) sparks) cause a depolarizing shift in activation and a hyperpolarizing shift in isochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca(2+)](i) buffer capacity or depleting SR Ca(2+) store blunted these changes, which could be reproduced in WT cells by RyRCa(2+) leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca(2+) control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca(2+) signals and CaM function.  相似文献   

12.
The actions of cyclic ADP-ribose (cADPR), a regulator of Ca2+-induced Ca2+ release (CICR), were investigated on Ca2+ release and sarcoplasmic reticulum (SR) Ca2+ loading in cardiac myocytes at physiological temperature. In guinea-pig ventricular cells, cADPR, applied via patch pipette or from photorelease of its caged derivative, increased contraction amplitude and whole-cell Ca2+ transients, without affecting SR Ca2+ load (measured in response to rapid caffeine application). Under voltage-clamp conditions, photorelease of caged cADPR enhanced Ca2+ transient magnitude without affecting the peak amplitude of L-type Ca2+ current or its rate of decay, indicative of an increase in CICR gain. In rat permeabilised ventricular myocytes, rapid application of cADPR increased Ca2+ spark frequency within 30 s, and this effect was maintained over a 10 min exposure. Enhancement of spark frequency was not associated with changes in SR Ca2+ load at 30 s and 3 min of exposure to cADPR; however, prolonged exposure (10 min) was associated with an increased SR Ca2+ load (32+/-7%). The observations are consistent with dual actions of cADPR: a rapid effect on CICR that does not depend on an increased SR Ca2+ load, and an additional slower effect that is associated with enhanced SR Ca2+ levels.  相似文献   

13.
The role of ryanodine receptor (RyR) in cardiac excitation-contraction (E-C) coupling in newborns (NB) is not completely understood. To determine whether RyR functional properties change during development, we evaluated cellular distribution and functionality of sarcoplasmic reticulum (SR) in NB rats. Sarcomeric arrangement of immunostained SR Ca(2+)-ATPase (SERCA2a) and the presence of sizeable caffeine-induced Ca2+ transients demonstrated that functional SR exists in NB. E-C coupling properties were then defined in NB and compared with those in adult rats (AD). Ca2+ transients in NB reflected predominantly sarcolemmal Ca2+ entry, whereas the RyR-mediated component was approximately 13%. Finally, the RyR density and functional properties at the single-channel level in NB were compared with those in AD. Ligand binding assays revealed that in NB, RyR density can be up to 36% of that found in AD, suggesting that some RyRs do not contribute to the Ca2+ transient. To test the hypothesis that RyR functional properties change during development, we incorporated single RyRs into lipid bilayers. Our results show that permeation and gating kinetics of NB RyRs are identical to those of AD. Also, endogenous ligands had similar effects on NB and AD RyRs: sigmoidal Ca2+ dependence, stronger Mg(2+)-induced inhibition at low cytoplasmic Ca2+ concentrations, comparable ATP-activating potency, and caffeine sensitivity. These observations indicate that NB rat heart contains fully functional RyRs and that the smaller contribution of RyR-mediated Ca2+ release to the intracellular Ca2+ transient in NB is not due to different single RyR channel properties or to the absence of functional intracellular Ca2+ stores.  相似文献   

14.
H Takeshima  S Komazaki  K Hirose  M Nishi  T Noda    M Iino 《The EMBO journal》1998,17(12):3309-3316
The ryanodine receptor type 2 (RyR-2) functions as a Ca2+-induced Ca2+ release (CICR) channel on intracellular Ca2+ stores and is distributed in most excitable cells with the exception of skeletal muscle cells. RyR-2 is abundantly expressed in cardiac muscle cells and is thought to mediate Ca2+ release triggered by Ca2+ influx through the voltage-gated Ca2+ channel to constitute the cardiac type of excitation-contraction (E-C) coupling. Here we report on mutant mice lacking RyR-2. The mutant mice died at approximately embryonic day (E) 10 with morphological abnormalities in the heart tube. Prior to embryonic death, large vacuolate sarcoplasmic reticulum (SR) and structurally abnormal mitochondria began to develop in the mutant cardiac myocytes, and the vacuolate SR appeared to contain high concentrations of Ca2+. Fluorometric Ca2+ measurements showed that a Ca2+ transient evoked by caffeine, an activator of RyRs, was abolished in the mutant cardiac myocytes. However, both mutant and control hearts showed spontaneous rhythmic contractions at E9.5. Moreover, treatment with ryanodine, which locks RyR channels in their open state, did not exert a major effect on spontaneous Ca2+ transients in control cardiac myocytes at E9.5-11.5. These results suggest no essential contribution of the RyR-2 to E-C coupling in cardiac myocytes during early embryonic stages. Our results from the mutant mice indicate that the major role of RyR-2 is not in E-C coupling as the CICR channel in embryonic cardiac myocytes but it is absolutely required for cellular Ca2+ homeostasis most probably as a major Ca2+ leak channel to maintain the developing SR.  相似文献   

15.
To study the function and regulation of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel, we expressed the RyR2 proteins in a Chinese hamster ovary (CHO) cell line, and assayed its function by single channel current recording and confocal imaging of intracellular Ca(2+) ([Ca(2+)](i)). The 16-kb cDNA encoding the full-length RyR2 was introduced into CHO cells using lipofectAmine and electroporation methods. Incorporation of microsomal membrane vesicles isolated from these transfected cells into lipid bilayer membrane resulted in single Ca(2+) release channel activities similar to those of the native Ca(2+) release channels from rabbit cardiac muscle SR membranes, both in terms of gating kinetics, conductance, and ryanodine modification. The expressed RyR2 channels were found to exhibit more frequent transitions to subconductance states than the native RyR2 channels and RyR1 expressed in CHO cells. Caffeine, an exogenous activator of RyR, induced release of [Ca(2+)](i) from these cells. Confocal imaging of cells expressing RyR2 did not detect spontaneous or caffeine-induced local Ca(2+) release events (i.e., "Ca(2+) sparks") typically seen in cardiac muscle. Our data show that the RyR2 expressed in CHO cells forms functional Ca(2+) release channels. Furthermore, the lack of localized Ca(2+) release events in these cells suggests that Ca(2+) sparks observed in cardiac muscle may involve cooperative gating of a group of Ca(2+) release channels and/or their interaction with muscle-specific proteins.  相似文献   

16.
Activation of Ca2+ release channels/ryanodine receptors (RyR) by the inward Ca2+ current (ICa) gives rise to Ca2+-induced Ca2+ release (CICR), the amplifying Ca2+ signaling mechanism that triggers contraction of the heart. CICR, in theory, is a high-gain, self-regenerating process, but an unidentified mechanism stabilizes it in vivo. We reported previously (Lokuta, A. J., Meyers, M. B., Sander, P. R., Fishman, G. I., and Valdivia, H. H. (1997) J. Biol. Chem. 272, 25333-25338) that sorcin, a 22-kDa Ca2+-binding protein, binds to cardiac RyRs with high affinity and completely inhibits channel activity. Here we show that sorcin significantly inhibits both the spontaneous activity of RyRs in quiescent cells (visualized as Ca2+ sparks) and the ICa-triggered activity of RyRs that gives rise to [Ca2+]i transients. Because sorcin decreased the amplitude of the [Ca2+]i transient without affecting the amplitude or kinetics of ICa, the overall effect of sorcin was to reduce the "gain" of excitation-contraction coupling. Immunocytochemical staining shows that sorcin localizes to the dyadic space of ventricular cardiac myocytes. Ca2+ induces conformational changes and promotes translocation of sorcin between soluble and membranous compartments, but the [Ca2+] required for the latter process (ED50 = approximately 200 microM) appears to be reached only within the dyadic space. Rapid injection of 5 microM sorcin onto the cytosolic face of RyRs reconstituted in lipid bilayers resulted in complete inhibition of channel activity in < or = 20 ms. Thus, sorcin is a potent inhibitor of both spontaneous and ICa-triggered RyR activity and is kinetically capable of playing a role in terminating the positive feedback loop of CICR.  相似文献   

17.
Caffeine-activated, large-conductance, nonselective cation channels (LCCs) have been found in the plasma membrane of isolated cardiac myocytes in several species. However, little is known about the effects of opening these channels. To examine such effects and to further understand the caffeine-activation mechanism, we carried out studies using whole-cell patch-clamp techniques with freshly isolated cardiac myocytes from rats and mice. Unlike previous studies, thapsigargin was used so that both the effect of opening LCCs and the action of caffeine were independent of Ca(2+) release from intracellular stores. These Ca(2+)-permeable LCCs were found in a majority of the cells from atria and ventricles, with a conductance of approximately 370 pS in rat atria. Caffeine and all its direct metabolic products (theophylline, theobromine, and paraxanthine) activated the channel, while isocaffeine did not. Although they share some similarities with ryanodine receptors (RyRs, the openings of which give rise to Ca(2+) sparks), LCCs also showed some different characteristics. With simultaneous Ca(2+) imaging and current recording, the localized fluorescence increase due to Ca(2+) entry through a single opening of an LCC (SCCaFT) was detected. When membrane potential, instead of current, was recorded, SCCaFT-like fluorescence transients (indicating single LCC openings) were found to accompany membrane depolarizations. To our knowledge, this is the first report directly linking membrane potential changes to a single opening of an ion channel. Moreover, these events in cardiac cells suggest a possible additional mechanism by which caffeine and theophylline contribute to the generation of cardiac arrhythmias.  相似文献   

18.
Burn trauma causes cardiac dysfunction. However, much of the underlying cellular and molecular mechanisms remain elusive. In the present study, we demonstrate the roles of excessive sarcoplasmic reticulum (SR) Ca(2+) leakage and oxidative stress in burn-associated acute heart failure. In cardiomyocytes from failing rat hearts 12 h after full-thickness cutaneous burn of about 40% of the total body surface area, we found that Ca(2+) transients and contractility were impaired, but the triggering L-type Ca(2+) channel current density was unaltered, giving rise to a significantly reduced gain of excitation-contraction coupling. This deficiency in SR Ca(2+) release was accompanied by a reduction in Ca(2+) content in the SR. Surprisingly, the frequency of spontaneous Ca(2+) sparks was increased by 1.4-fold; Ca(2+) tolerance test (10 mM extracellular Ca(2+)) further showed 2.0- and 1.5-fold more frequent Ca(2+) waves and Ca(2+) sparks, respectively. Myofilament sensitivity to Ca(2+), however, seemed to be unaffected. These results suggest hyperactivity of the ryanodine receptor (RyR) Ca(2+) release channel and a leaky SR in burn. Importantly, pretreatment with antioxidant vitamins C and E seemed to prevent burn-induced RyR hypersensitivity and SR leakage and thereby normalize Ca(2+) transients and contractility. Concomitantly, the in vivo cardiac functions were also more tolerant of traumatic burn. Collectively, our findings suggest that SR leakage due to oxidative stress is likely a major candidate mechanism underlying burn-associated acute heart failure. Antioxidant therapy in burn trauma provides cardioprotection, at least in part, by protecting RyR's from oxidative stress-induced hypersensitivity.  相似文献   

19.
Calmodulin (CaM) binding to the type 2 ryanodine receptor (RyR2) regulates Ca release from the cardiac sarcoplasmic reticulum (SR). However, the structural basis of CaM regulation of the RyR2 is poorly defined, and the presence of other potential CaM binding partners in cardiac myocytes complicates resolution of CaM's regulatory interactions with RyR2. Here, we show that a fluorescence-resonance-energy-transfer (FRET)-based approach can effectively resolve RyR2 CaM binding, both in isolated SR membrane vesicles and in permeabilized ventricular myocytes. A small FRET donor was targeted to the RyR2 cytoplasmic assembly via fluorescent labeling of the FKBP12.6 subunit. Acceptor fluorophore was attached at discrete positions within either the N- or the C-lobe of CaM. FRET between FKBP12.6 and CaM bound to SR vesicles indicated CaM binding at a single high-affinity site within 60 Å of FKBP12.6. Micromolar Ca increased the apparent affinity of CaM binding and slowed CaM dissociation, but did not significantly affect maximal FRET efficiency at saturating CaM. FRET was strongest when the acceptor was attached at either of two positions within CaM's N-lobe versus sites in CaM's C-lobe, providing CaM orientation information. In permeabilized ventricular myocytes, FKBP12.6 and CaM colocalized to Z-lines, and the efficiency of energy transfer to both the N- and C-lobes of CaM was comparable to that observed in SR vesicle experiments. Results also indicate that both the location and orientation of CaM binding on the RyR2 are very similar to the skeletal muscle RyR1 isoform. Specific binding of CaM to functional RyR2 channels in the cardiac myocyte environment can be monitored using FKBP biosensors and FRET.  相似文献   

20.
A model of the functional release unit (FRU) in rat cardiac muscle consisting of one dihydropyridine receptor (DHPR) and eight ryanodine receptor (RyR) channels, and the volume surrounding them, is formulated. It is assumed that no spatial [Ca2+] gradients exist in this volume, and that each FRU acts independently. The model is amenable to systematic parameter studies in which FRU dynamics are simulated at the channel level using Monte Carlo methods with Ca2+ concentrations simulated by numerical integration of a coupled system of differential equations. Using stochastic methods, Ca(2+)-induced Ca2+ release (CICR) shows both high gain and graded Ca2+ release that is robust when parameters are varied. For a single DHPR opening, the resulting RyR Ca2+ release flux is insensitive to the DHPR open duration, and is determined principally by local sarcoplasmic reticulum (SR) Ca2+ load, consistent with experimental data on Ca2+ sparks. In addition, single RyR openings are effective in triggering Ca2+ release from adjacent RyRs only when open duration is long and SR Ca2+ load is high. This indicates relatively low coupling between RyRs, and suggests a mechanism that limits the regenerative spread of RyR openings. The results also suggest that adaptation plays an important modulatory role in shaping Ca2+ release duration and magnitude, but is not solely responsible for terminating Ca2+ release. Results obtained with the stochastic model suggest that high gain and gradedness can occur by the recruitment of independent FRUs without requiring spatial [Ca2+] gradients within a functional unit or cross-coupling between adjacent functional units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号