首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
All primate lentiviruses known to date contain one or two open reading frames with homology to the human immunodeficiency virus type 1 (HIV-1) vpr gene. HIV-1 vpr encodes a 96-amino-acid protein with multiple functions in the viral life cycle. These functions include modulation of the viral replication kinetics, transactivation of the long terminal repeat, participation in the nuclear import of preintegration complexes, induction of G2 arrest, and induction of apoptosis. The simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagm) contains a vpr homologue, which encodes a 118-amino-acid protein. SIVagm vpr is structurally and functionally related to HIV-1 vpr. The present study focuses on how three specific functions (transactivation, induction of G2 arrest, and induction of apoptosis) are related to one another at a functional level, for HIV-1 and SIVagm vpr. While our study supports previous reports demonstrating a causal relationship between induction of G2 arrest and transactivation for HIV-1 vpr, we demonstrate that the same is not true for SIVagm vpr. Transactivation by SIVagm vpr is independent of cell cycle perturbation. In addition, we show that induction of G2 arrest is necessary for the induction of apoptosis by HIV-1 vpr but that the induction of apoptosis by SIVagm vpr is cell cycle independent. Finally, while SIVagm vpr retains its transactivation function in human cells, it is unable to induce G2 arrest or apoptosis in such cells, suggesting that the cytopathic effects of SIVagm vpr are species specific. Taken together, our results suggest that while the multiple functions of vpr are conserved between HIV-1 and SIVagm, the mechanisms leading to the execution of such functions are divergent.  相似文献   

2.
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.  相似文献   

3.
Simian immunodeficiency virus from African green monkeys.   总被引:24,自引:14,他引:10       下载免费PDF全文
Simian immunodeficiency virus (SIV) was isolated from the total peripheral blood mononuclear cell population and the monocyte-macrophage adherent cell population of three seropositive green monkeys originating from Kenya. SIV from these African green monkeys (SIVagm) was isolated and continuously produced with the MOLT-4 clone 8 (M4C18) cell line but not with a variety of other cells including HUT-78, H9, CEM, MT-4, U937, and uncloned MOLT-4 cells. Once isolated, these SIVagm isolates were found to replicate efficiently in M4C18, SupT1, MT-4, U937, and Jurkat-T cells but much less efficiently if at all in HUT-78, H9, CEM, and MOLT-4 cells. The range of CD4+ cells fully permissive for replication of these SIVagm isolates thus differs markedly from that of previous SIV isolates from macaques (SIVmac). These SIVagm isolates had a morphogenesis and morphology like that of human immunodeficiency virus (HIV) and other SIV isolates. Antigens of SIVagm and SIVmac cross-reacted by comparative enzyme-linked immunosorbent assay only with reduced efficiency, and optimal results were obtained when homologous antibody and antigen were used. Western blotting (immunoblotting) of purified preparations of SIVagm isolate 385 (SIVagm385) revealed major viral proteins of 120, 27, and 16 kilodaltons (kDa). The presumed major core protein of 27 kDa cross-reacted antigenically with the corresponding proteins of SIVmac (28 kDa) and HIV-1 (24 kDa) by Western blotting. Hirt supernatant replicative-intermediate DNA prepared from cells freshly infected with SIVagm hybridized to SIVmac and HIV-2 DNA probes. Detection of cross-hybridizing DNA sequences, however, required very low stringency, and the restriction endonuclease fragmentation patterns of SIVagm were not similar to those of SIVmac and HIV-2. The nucleotide sequence of a portion of the pol gene of SIVagm385 revealed amino acid identities of 65% with SIVmac142, 64% with HIV-2ROD, and 56% with HIV-1BRU; SIVagm385 is thus related to but distinct from previously described primate lentiviruses SIVmac, HIV-1, and HIV-2. Precise information on the genetic makeup of these and other SIV isolates will possibly lead to better understanding of the history and evolution of these viruses and may provide insight into the origin of viruses that cause acquired immunodeficiency syndrome in humans.  相似文献   

4.
Evolution of the primate lentiviruses: evidence from vpx and vpr.   总被引:34,自引:0,他引:34       下载免费PDF全文
The genomes of the four primate lentiviral groups are complex and contain several regulatory or accessory genes. Two of these genes, vpr and vpx, are found in various combinations within the four groups and encode proteins whose functions have yet to be elucidated. Comparison of the encoded protein sequences suggests that the vpx gene within the HIV-2 group arose by the duplication of an ancestral vpr gene within this group. Evolutionary distance analysis showed that both genes were well conserved when compared with viral regulatory genes, and indicated that the duplication occurred at approximately the same time as the HIV-2 group and the other primate lentivirus groups diverged from a common ancestor. Furthermore, although the SIVagm vpx proteins are homologous to the HIV-2 group vpx proteins, there are insufficient grounds from sequence analysis for classifying them as vpx proteins. Because of their similarity to the vpr proteins of other groups, we suggest reclassifying the SIVagm vpx gene as a vpr gene. This creates a simpler and more uniform picture of the genomic organization of the primate lentiviruses and allows the genomic organization of their common precursor to be defined; it probably contained five accessory genes: tat, rev, vif, nef and vpr.  相似文献   

5.
Progression to AIDS in the absence of a gene for vpr or vpx.   总被引:28,自引:22,他引:6       下载免费PDF全文
Rhesus monkeys (Macaca mulatta) were experimentally infected with strains of simian immunodeficiency virus (SIV) derived from SIVmac239 lacking vpr, vpx, or both vpr and vpx genes. These auxiliary genes are not required for virus replication in cultured cells but are consistently conserved within the SIVmac/human immunodeficiency virus type 2/SIVsm group of primate lentiviruses. All four rhesus monkeys infected with the vpr deletion mutant showed an early spike in plasma antigenemia, maintained high virus burdens, exhibited declines in CD4+ lymphocyte concentrations, and had significant changes in lymph node morphology, and two have died to date with AIDS. The behavior of the vpr deletion mutant was indistinguishable from that of the parental, wild-type virus. Rhesus monkeys infected with the vpx deletion mutant showed lower levels of plasma antigenemia, lower virus burdens, and delayed declines in CD4+ lymphocyte concentrations but nonetheless progressed with AIDS to a terminal stage. The vpr+vpx double mutant was severely attenuated, with much lower virus burdens and no evidence of disease progression. These and other results indicate that vpr provides only a slight facilitating advantage for wild-type SIVmac replication in vivo. Thus, progression to AIDS and death can occur in the absence of a gene for vpr or vpx.  相似文献   

6.
Serological surveys have revealed that 30 to 50% of wild-caught African green monkeys have antibodies reactive to simian immunodeficiency virus (SIV), a retrovirus related to human immunodeficiency virus (HIV). Although the nucleotide sequence of one SIVagm isolate, Tyo1, was recently reported, the extent of genetic variability among SIVagm isolates remains to be determined. Restriction endonuclease mapping of infectious molecular clones of two SIVagm isolates (266 and 385), described in this note, revealed conservation of only 4 of 39 sites across the genome. Partial sequence analysis of the molecular clones revealed only 80% amino acid sequence conservation in the pol gene. Although the three Kenyan SIVagm isolates, Tyo1, 385, and 266, are more closely related to each other than to other primate lentiviruses, genetic variation among these three isolates is much greater than that observed previously among individual HIV type 1 (HIV-1), HIV-2, or SIVmac isolates. Less variability among HIV-1 and HIV-2 isolates could be explained by recent entry into the human population. The extensive genetic variation in these Kenyan SIVagm isolates should prompt continued examination of SIVagm variability from dispersed geographic regions; SIVagm strains much more closely related to HIV-1, HIV-2, or SIVmac which would be reasonable candidates for recent cross-species transmission may be found.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

8.
Mutants of human immunodeficiency virus type 2 (HIV-2) carrying a frame-shift mutation in vpx, vpr, and in both genes were monitored for their growth potentials in a newly established lymphocytic cell line, HSC-F. Worthy of note, the replication of a vpx single mutant, but not vpr, was severely impaired in these cells, and that of a vpx-vpr double mutant was more damaged. Defective replication sites of the vpx single and vpx-vpr double mutants were demonstrated to be mapped, respectively, to the nuclear import of viral genome, and to both, this process and the virus assembly/release stage. While the mutational effect of vpr was small, the replication efficiency in one cycle of the vpx mutant relative to that of wild-type virus was estimated to be 10%. The growth phenotypes of the vpx, vpr, and vpx-vpr mutant viruses in HSC-F cells were essentially repeated in primary human lymphocytes. In primary human macrophages, whereas the vpx and vpx-vpr mutants did not grow at all, the vpr mutant grew equally as well as the wild-type virus. These results strongly suggested that Vpx is critical for up-regulation of HIV-2 replication in natural target cells by enhancing the genome nuclear import, and that Vpr promotes HIV-2 replication somewhat, at least in lymphocytic cells, at a very late replication phase.  相似文献   

9.
The vpr gene from the human immunodeficiency virus type-1 (HIV-1) encodes a 14-kDa protein that prevents cell proliferation by causing a block in the G(2) phase of the cell cycle. This cellular function of vpr is conserved in evolution because other primate lentiviruses, including HIV-2, SIV(mac), and SIV(agm) encode related genes that also induce G(2) arrest. After G(2) arrest, cells expressing vpr undergo apoptosis. The signaling pathways that result in vpr-induced cell cycle arrest and apoptosis have yet to be determined. The p53 tumor suppressor protein is involved in signaling pathways leading to cell cycle arrest and apoptosis in a variety of cell types. In this work, we examine the potential role of p53 in mediating cell cycle block and/or apoptosis by HIV-1 vpr and demonstrate that both phenomena occur independently of the presence and function of p53. Caspases are common mediators of apoptosis. We examined the potential role of caspases in mediating vpr-induced apoptosis by treating vpr-expressing cells with Boc-D-FMK, a broad spectrum, irreversible inhibitor of the caspase family. Boc-D-FMK significantly reduced the numbers of apoptotic cells induced by vpr. Therefore, we conclude that vpr-induced apoptosis is effected via the activation of caspases.  相似文献   

10.
Y Zhao  J Cao  M R O'Gorman  M Yu    R Yogev 《Journal of virology》1996,70(9):5821-5826
The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and expressed in wild-type S. pombe cells, and using these cells, we were able to demonstrate the specific Vpr-induced effects by induction and suppression of vpr gene expression. Induction of HIV-1 vpr gene expression affected S. pombe at the colonial, cellular, and molecular levels. Specifically, Vpr induced small-colony formation, polymorphic cells, growth delay, and cell cycle G2 arrest. Additionally, Vpr-induced G2 arrest appeared to be independent of cell size and morphological changes. The cell cycle G2 arrest correlated with increased phosphorylation of p34cdc2, suggesting negative regulation of mitosis by HIV-1 Vpr. Treatment of Vpr-induced cell with a protein phosphatase inhibitor, okadaic acid, transiently suppressed cell cycle arrest and morphological changes. This observation implicates possible involvement of protein phosphatase(s) in the effects of Vpr. Together, these data showed that the HIV-1 Vpr-induced cellular changes in S. pombe are similar to those observed in human cells. Therefore, the S. pombe system is suited for further investigation of the HIV-1 vpr gene functions.  相似文献   

11.
Genetic diversity of simian immunodeficiency virus   总被引:1,自引:0,他引:1  
We have demonstrated that the genetic diversity of simian immunodeficiency virus from African green monkeys (SIVagm) is much greater than that observed previously for individual HIV-1, HIV-2, or SIVmac isolates. Extensive genetic variation among SIVagm isolates and the high prevalence of green monkey infection without disease suggest that the virus has been in the green monkey population for a long time. We have also demonstrated that SIV from a sooty mangabey monkey (isolate SMM-7) is closer to SIVmac and HIV-2 than to HIV-1 and SIVagm. The extensive genetic diversity of SIVagm and the relatedness of SIVsmm to HIV-2 warrant continued examination of SIVagm and SIVsmm isolates from dispersed geographic regions. SIV strains much more closely related to HIV-1, HIV-2, or SIVmac may be found which would be reasonable candidates for recent cross-species transmission.  相似文献   

12.
The virus infectivity factor (Vif) is a protein encoded by most primate lentiviruses. Recent evidence suggests that HIV-1 Vif reduces the intracellular levels of the host cytidine deaminase APOBEC3G (Apo3G) and inhibits its packaging into virions. These functions of Vif are thought to be species-specific. Accordingly, HIV-1 Vif can target only human Apo3G (hApo3G), whereas, African green monkey simian immunodeficiency virus (SIVagm) Vif can inhibit African green monkey but not human Apo3G. Consistent with this, we found that SIVagm Vif does not affect the stability of exogenously and endogenously expressed hApo3G and does not prevent packaging of exogenous and endogenous hApo3G into SIVagm virions. Nevertheless, SIVagm Vif supported spreading infection of SIVagm virus in the hApo3G-positive human A3.01 T cell line and rescued infectivity of viruses produced from Apo3G-expressing HeLa cells. Sequence analysis verified that SIVagm Vif inhibited the accumulation of hApo3G-induced mutations, suggesting that SIVagm Vif is indeed active in human cells. Our data suggest that SIVagm Vif can inhibit hApo3G activity without inducing its intracellular degradation or preventing its packaging into virions.  相似文献   

13.
X F Yu  M Matsuda  M Essex    T H Lee 《Journal of virology》1990,64(11):5688-5693
The genomes of simian immunodeficiency viruses isolated from rhesus macaques (SIVmac) contain an open reading frame (ORF), vpr, which has a coding potential of 97 to 101 amino acid residues. In this study, a vpr ORF-encoded protein of approximately 11 kDa was identified, and anti-vpr antibodies were detected in rhesus macaques infected by SIVmac. These results provide clear evidence that the vpr ORF is a coding gene of SIVmac. The vpr protein, like the vpx protein which is encoded by another accessory gene of SIVmac, was also found to be associated with viral particles. This observation demonstrates that more than one accessory gene product can be present in the virions of this family of retroviruses and raises the possibility that the vpr protein may have a role in early part of the virus life cycle.  相似文献   

14.
A distinct African lentivirus from Sykes' monkeys.   总被引:12,自引:8,他引:4       下载免费PDF全文
Asymptomatic infection with simian immunodeficiency virus (SIV) has been demonstrated in African Sykes' monkeys (Cercopithecus mitis albogularis), and virus isolation confirmed infection with a novel SIV from Sykes' monkeys (SIVsyk). Macaques inoculated with SIVsyk became persistently infected but remained clinically healthy. We utilized polymerase chain reaction amplification to generate a full-length, infectious molecular clone of SIVsyk. The genome organization of SIVsyk is similar to that of the other primate lentiviruses, consisting of gag, pol, vif, vpr, tat, rev, env, and nef. A unique feature is the absence of the highly conserved NF-kappa B binding site in the long terminal repeat. SIVsyk is genetically equidistant from other primate lentiviruses. Thus, SIVsyk represents a new group that is distinct from the four previously recognized primate lentivirus groups: human immunodeficiency virus type 1 (HIV-1), SIV from sooty mangabeys (SIVsmm) and HIV-2, SIV from African green monkeys (SIVagm), and SIV from mandrills (SIVmnd). The genetic differences between SIVsyk and SIVagm, isolates derived from monkeys of the same genus, underscore the potential for other distinct SIVs which have yet to be isolated and characterized.  相似文献   

15.
X F Yu  Q C Yu  M Essex    T H Lee 《Journal of virology》1991,65(9):5088-5091
vpx is a unique open reading frame found in simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) but not in HIV-1. It encodes a 12- to 16-kDa virion-associated protein. Although vpx is dispensable for viral replication in several established human lymphocyte cell lines, there is no consensus regarding whether this gene is required for efficient viral replication in freshly isolated lymphocytes. We report here that the vpx mutant of SIVmac exhibits different degrees of impairment from wild-type SIVmac in freshly isolated lymphocytes. This defect is more pronounced in macrophages from the same donors. Our findings suggest that vpx is required for efficient viral replication in fresh lymphocytes and macrophages.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) vpr gene is an evolutionarily conserved gene among the primate lentiviruses HIV-1, HIV-2, and simian immunodeficiency viruses. One of the unique functions attributed to the vpr gene product is the arrest of cells in the G2 phase of the cell cycle. Here we demonstrate that Vpr interacts physically with HHR23A, one member of an evolutionarily conserved gene family involved in nucleotide excision repair. Interaction of Vpr with HHR23A was initially identified through a yeast two-hybrid screen and was confirmed by the demonstration of direct binding between bacterially expressed recombinant and transiently expressed or chemically synthesized protein products. Visualization of HHR23A and Vpr by indirect immunofluorescence and confocal microscopy indicates that the two proteins colocalize at or about the nuclear membrane. We also map the Vpr-binding domain in HHR23A to a C-terminal 45-amino-acid region of the protein previously shown to have homology to members of the ubiquitination pathway. Overexpression of HHR23A and a truncated derivative which includes the Vpr-binding domain results in a partial alleviation of the G2 arrest induced by Vpr, suggesting that the interaction between Vpr and HHR23A is critical for cell cycle arrest induced by Vpr. These results provide further support for the hypothesis that Vpr interferes with the normal function of a protein or proteins involved in the DNA repair process and, thus, in the transmission of signals that allow cells to transit from the G2 to the M phase of the cell cycle.  相似文献   

17.
A Werner  G Winskowsky    R Kurth 《Journal of virology》1990,64(12):6252-6256
The CD4 molecule is expressed on T-helper cells and serves as the cellular receptor for the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and for the simian immunodeficiency viruses SIVmac and SIVagm. HIV-1, HIV-2, and SIVmac infectivity can be blocked by monoclonal antibodies (MAbs) directed against the CD4 molecule and by soluble CD4 proteins (sCD4). In the present study, we demonstrated not only lack of inhibition, but 10- to 100-fold sCD4-dependent enhancement of SIVagm infectivity of human T-cell lymphoma lines, although SIVagm infection was blocked by MAbs OKT4a and Leu3a. SIVagm enhancement with sCD4 was suppressed by MAbs OKT4a and Leu3a to levels observed without addition of sCD4. The infectivity of all four tested SIVagm variants was enhanced by sCD4 on all tested lymphoma cell lines. These results suggest a second step (second or secondary receptor) required for enhancing virus entry into the cell and may have serious implications for approaches to the treatment of acquired immunodeficiency syndrome on the basis of modified sCD4 molecules.  相似文献   

18.
We constructed five chimeric clones between human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIVMAC) and four SIVMAC mutants by recombinant DNA techniques. Three chimeric clones and all mutants with an alteration in either the vif, vpx, vpr, or nef gene were infectious to human CD4-positive cell lines. The susceptibility of macaque monkey peripheral blood mononuclear cells (PBMC) to infection by these mutants and chimeras was examined in vitro. Macaque PBMC supported the replication of wild-type and vpx, vpr, and nef mutant SIVMAC strains. A chimera carrying the long terminal repeats (LTRs), gag, pol, vif, and vpx of SIVMAC and tat, rev, vpu, and env of HIV-1 was also replication competent in PBMC. In contrast, HIV-1, the vif mutant of SIVMAC, a chimera containing rev and env of SIVMAC, and a chimera containing vpx, vpr, tat, rev, and env of SIVMAC did not grow in PBMC. Western immunoblotting analysis of the replicating chimera in PBMC confirmed the hybrid nature of the virus. These data strongly suggested that the sequence important for macaque cell tropism lies within the LTR, gag, pol, and/or vif sequences of the SIVMAC genome.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein prevents infected cells from passing through mitosis by arresting them in the G2 phase of the cell cycle. Vpr is conserved among all primate lentiviruses, suggesting an important role in the virus life cycle. Moreover, in this study we show that the ability to cause cell cycle arrest is also conserved in Vpr proteins from a wide variety of both tissue culture-passaged and uncultured human (HIV-1 and HIV-2), sooty mangabey (simian immunodeficiency virus SIV(SM)), African green monkey (SIV(AGM)), and Sykes' monkey (SIV(SYK)) isolates. However, this property is cell type specific and appears to depend on the particular primate species from which the cells are derived. SIV(AGM) and SIV(SYK) Vpr proteins are capable of arresting African green monkey cells but are completely inactive in human cells. By contrast, HIV-1, HIV-2, and SIV(SM) Vpr proteins function in both simian and human cell types, although SIV(SM) Vpr functions more efficiently in simian cells than it does in human cells. Neither differential protein stability nor subcellular localization explains the species-specific activities of these proteins. These results thus suggest that Vpr exerts its G2 arrest function by interacting with cellular factors that have evolved differently among the various primate species.  相似文献   

20.
We have previously shown that the expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts produces Gag virus-like particles (VLPs) at the plasma membrane, indicating that yeast has all the host factors necessary for HIV-1 Gag assembly. Here we expand the study by using diverse primate lentiviral Gags and show that yeast does not support the production of HIV-2 or simian immunodeficiency virus SIVmac Gag VLPs but allows the production of SIVagm and SIVmnd Gag VLPs. Particle budding was observed at the surfaces of cells expressing SIVagm and SIVmnd Gags, but cells expressing HIV-2 and SIVmac Gags showed only membrane-ruffling structures, although they were accompanied with electron-dense submembrane layers, suggesting arrest at an early stage of particle budding. Comparison of HIV-1 and HIV-2 Gag expression revealed broadly equivalent levels of intracellular Gag expression and Gag N-terminal myristoylation in yeast. Both Gags showed the same membrane-binding ability and were incorporated into lipid raft fractions at a physiological concentration of salt. HIV-2 Gag, however, failed to form a high-order multimer and easily dissociated from the membrane, phenomena which were not observed in higher eukaryotic cells. A series of chimeric Gags between HIV-1 and HIV-2 and Gag mutants with amino acid substitutions revealed that a defined region in helix 2 of HIV-2 MA (located on the membrane-binding surface of MA) affects higher-order Gag assembly and particle production in yeast. Together, these data suggest that yeast may lack a host factor(s) for HIV-2 and SIVmac Gag assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号