首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ycf1p is the prototypical member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette (ABC) transporters. Ycf1p resides in the vacuolar membrane and mediates glutathione-dependent transport processes that result in resistance to cadmium and other xenobiotics. A feature common to many MRP proteins that distinguishes them from other ABC transporters is the presence of a hydrophobic N-terminal extension (NTE), whose function is not clearly established. The NTE contains a membrane spanning domain (MSD0) with five transmembrane spans and a cytosolic linker region (L0). The goal of this study was to determine the functional significance of the NTE of Ycf1p by examining the localization and functional properties of Ycf1p partial molecules, expressed either singly or together. We show that MSD0 plays a critical role in the vacuolar membrane trafficking of Ycf1p, whereas L0 is dispensable for localization. On the other hand, L0 is required for transport function, as determined by monitoring cadmium resistance. We also examine an unusual aspect of Ycf1p biology, namely, the posttranslational proteolytic processing that occurs within a lumenal loop of Ycf1p. Processing is shown to be Pep4p dependent and thus serves as a convenient marker for proper vacuolar localization. The processed fragments associate with each other, suggesting that these natural cleavage products contribute together to Ycf1p function.  相似文献   

2.
Yeast cadmium factor (Ycf1), an ATP-binding cassette (ABC) protein of the multidrug resistance protein subfamily, is a vacuolar GS-conjugate transporter required for heavy metal and drug detoxification. There is evidence that phosphorylation may play a critical role in the function of ABC transporters from higher organisms. In this work, the possibility of Ycf1 phosphorylation was examined using site-directed mutagenesis. We demonstrate that Ser908 and Thr911, within the regulatory domain (R domain), are functionally important for Ycf1 transport activity and likely sites for phosphorylation. Mutation of these residues to alanine severely impaired the Ycf1-dependent cadmium detoxification capacity and transport activity, while replacement by acidic residues (mimicking phosphorylation) significantly suppressed the cadmium resistance and transport defects. Both in vitro treatment of Ycf1 with alkaline phosphatase and changes in the electrophoretic mobility of the S908A, T911A and double mutant S908A/T911A proteins supported the conclusion that Ycf1 is a phosphoprotein. The screening of the yeast kinome identified four protein kinases affecting cadmium detoxification, but none of them was involved directly in the phosphorylation of Ycf1. Our data strongly implicate Ycf1 phosphorylation as a key determinant in cadmium resistance in yeast, a significant finding given that very little is known about phosphorylation of ABC transporters in yeast.  相似文献   

3.
4.
The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd2+ transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1pK669M) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion.  相似文献   

5.
Families of arsenic transporters.   总被引:24,自引:0,他引:24  
Bacterial arsenic resistance (ars) operons encode an arsenite-efflux system that can be a secondary carrier protein (ArsB) or an anion-translocating ATPase (ArsAB). Yeasts extrude arsenite using Acr3p, a plasma membrane carrier protein, or sequester it in vacuoles as the glutathione conjugate using Ycf1p, an ABC transporter.  相似文献   

6.
Maturation of the Saccharomyces cerevisiae a-factor precursor involves COOH-terminal CAAX processing (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) followed by cleavage of an NH2-terminal extension (two sequential proteolytic processing steps). The aim of this study is to clarify the precise role of Ste24p, a membrane-spanning zinc metalloprotease, in the proteolytic processing of the a-factor precursor. We demonstrated previously that Ste24p is necessary for the first NH2-terminal processing step by analysis of radiolabeled a-factor intermediates in vivo (Fujimura-Kamada, K., F.J. Nouvet, and S. Michaelis. 1997. J. Cell Biol. 136:271–285). In contrast, using an in vitro protease assay, others showed that Ste24p (Afc1p) and another gene product, Rce1p, share partial overlapping function as COOH-terminal CAAX proteases (Boyartchuk, V.L., M.N. Ashby, and J. Rine. 1997. Science. 275:1796–1800). Here we resolve these apparently conflicting results and provide compelling in vivo evidence that Ste24p indeed functions at two steps of a-factor maturation using two methods. First, direct analysis of a-factor biosynthetic intermediates in the double mutant (ste24Δ rce1Δ) reveals a previously undetected species (P0*) that fails to be COOH terminally processed, consistent with redundant roles for Ste24p and Rce1p in COOH-terminal CAAX processing. Whereas a-factor maturation appears relatively normal in the rce1Δ single mutant, the ste24Δ single mutant accumulates an intermediate that is correctly COOH terminally processed but is defective in cleavage of the NH2-terminal extension, demonstrating that Ste24p is also involved in NH2-terminal processing. Together, these data indicate dual roles for Ste24p and a single role for Rce1p in a-factor processing. Second, by using a novel set of ubiquitin–a-factor fusions to separate the NH2- and COOH-terminal processing events of a-factor maturation, we provide independent evidence for the dual roles of Ste24p. We also report here the isolation of the human (Hs) Ste24p homologue, representing the first human CAAX protease to be cloned. We show that Hs Ste24p complements the mating defect of the yeast double mutant (ste24Δ rce1Δ) strain, implying that like yeast Ste24p, Hs Ste24p can mediate multiple types of proteolytic events.  相似文献   

7.
8.
Summary: Members of the ATP-binding cassette (ABC) transporter superfamily exist in bacteria, fungi, plants, and animals and play key roles in the efflux of xenobiotic compounds, physiological substrates, and toxic intracellular metabolites. Based on sequence relatedness, mammalian ABC proteins have been divided into seven subfamilies, ABC subfamily A (ABCA) to ABCG. This review focuses on recent advances in our understanding of ABC transporters in the model organism Saccharomyces cerevisiae. We propose a revised unified nomenclature for the six yeast ABC subfamilies to reflect the current mammalian designations ABCA to ABCG. In addition, we specifically review the well-studied yeast ABCC subfamily (formerly designated the MRP/CFTR subfamily), which includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p). We focus on Ycf1p, the best-characterized yeast ABCC transporter. Ycf1p is located in the vacuolar membrane in yeast and functions in a manner analogous to that of the human multidrug resistance-related protein (MRP1, also called ABCC1), mediating the transport of glutathione-conjugated toxic compounds. We review what is known about Ycf1p substrates, trafficking, processing, posttranslational modifications, regulation, and interactors. Finally, we discuss a powerful new yeast two-hybrid technology called integrated membrane yeast two-hybrid (iMYTH) technology, which was designed to identify interactors of membrane proteins. iMYTH technology has successfully identified novel interactors of Ycf1p and promises to be an invaluable tool in future efforts to comprehensively define the yeast ABC interactome.  相似文献   

9.
10.
Trypanosoma cruzi epimastigotes are auxotrophic for polyamines because they are unable to synthesize putrescine de novo. This deficiency is due to the absence of ornithine and arginine decarboxylase genes in the parasite genome. We have been able to obtain transgenic T. cruzi expressing heterologous genes coding for these enzymes. Since arginine decarboxylase normal expression in oat requires a post-translational proteolytic cleavage of an enzyme precursor, we have investigated whether a similar processing occurs inside the transformed protozoa expressing oat arginine decarboxylase or the same enzyme attached to a C-terminal (his)6-tag. We were able to demonstrate that the post-translational processing also takes place inside the transgenic parasites. This cleavage is probably the result of a general proteolytic activity of T. cruzi acting on a protease-sensitive region of the protein. Interestingly, the (his)6-tagged enzyme expressed in the transformed parasites showed considerably increased metabolic stability and catalytic efficiency.  相似文献   

11.
The Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p is involved in heavy metal detoxification by mediating the ATP-dependent transport of glutathione-metal conjugates to the vacuole. In the case of selenite toxicity, deletion of YCF1 was shown to confer increased resistance, rather than sensitivity, to selenite exposure [Pinson B, Sagot I & Daignan-Fornier B (2000) Mol Microbiol36, 679-687]. Here, we show that when Ycf1p is expressed from a multicopy plasmid, the toxicity of selenite is exacerbated. Using secretory vesicles isolated from a sec6-4 mutant transformed either with the plasmid harbouring YCF1 or the control plasmid, we establish that the glutathione-conjugate selenodigluthatione is a high-affinity substrate of this ATP-binding cassette transporter and that oxidized glutathione is also efficiently transported. Finally, we show that the presence of Ycf1p impairs the glutathione/oxidized glutathione ratio of cells subjected to a selenite stress. Possible mechanisms by which Ycf1p-mediated vacuolar uptake of selenodiglutathione and oxidized glutathione enhances selenite toxicity are discussed.  相似文献   

12.
The yeast vacuolar membrane protein Ycf1p and its mammalian counterpart, MRP1, belong to the ABCC subfamily of ATP-binding cassette (ABC) transporters that rid cells of toxic endogenous and xenobiotic compounds. Like most members of the ABCC subfamily, Ycf1p contains an N-terminal extension in addition to its ABC "core" domain and transports substrates in the form of glutathione conjugates. Ycf1p is subject to complex regulation to ensure its optimal function. Previous studies showed that Ycf1p activity is stimulated by a guanine nucleotide exchange factor, Tus1p, and is positively regulated by phosphorylation in its ABC core domain at residues Ser-908 and Thr-911. Here we provide evidence that phosphorylation of Ser-251 in the Ycf1p N-terminal extension negatively regulates activity. Mutant Ycf1p-S251A exhibits increased resistance to cadmium in vivo and increased Ycf1p-dependent transport of [(3)H]estradiol-beta-17-glucuronide in vitro as compared with wild-type Ycf1p. Activity is restored to the wild-type level for Ycf1-S251E. To identify kinase(s) that negatively regulate Ycf1p function, we conducted an integrated membrane yeast two-hybrid (iMYTH) screen and identified two kinase genes, CKA1 and HAL5, deletion of which increases Ycf1p function. Genetic evidence suggests that Cka1p may regulate Ycf1p function through phosphorylation of Ser-251 either directly or indirectly. Overall, this study provides compelling evidence that negative, as well as positive, regulation of Ycf1p is mediated by phosphorylation.  相似文献   

13.
Ycf1p is a member of the ATP-binding cassette transporter family of membrane proteins. Strong sequence similarity has been observed between Ycf1p, the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance protein (MRP). In this work, we have examined the functional significance of several of the conserved amino acid residues and the genetic requirements for Ycf1p subcellular localization. Biochemical fractionation experiments have established that Ycf1p, expressed at single-copy gene levels, co-fractionates with the vacuolar membrane and that this co-fractionation is independent of vps15 , vps34 or end3 gene function. Several cystic fibrosis-associated alleles of the CFTR were introduced into Ycf1p and found to elicit defects analogous to those seen in the CFTR. An amino-terminal extension shared between Ycf1p and MRP, but absent from CFTR, was found to be required for Ycf1p function, but not its subcellular localization. Mutant forms of Ycf1p were also identified that exhibited enhanced biological function relative to the wild-type protein. These studies indicate that Ycf1p will provide a simple, genetically tractable model system for the study of the trafficking and function of ATP-binding cassette transporter proteins, such as the CFTR and MRP.  相似文献   

14.
Growth of yeast strains, either deleted for the vacuolar ABC transporter Ycf1 or deleted for the plasma membrane ABC transporter Yor1p or overexpressing Yor1p, were compared for their sensitivity to cadmium. On solid medium cell death (or growth inhibition) was observed at cadmium concentrations higher than 100 microM when yeasts were grown at 30 degrees C for 24 h. However, for all tested strains cell death (or growth inhibition) was already observed at 40 microM cadmium when incubated at 23 degrees C for 60 h. Thus cadmium is more toxic to yeast at 23 degrees C than at 30 degrees C. At 23 degrees C, the Deltayor1 strain grew more slowly than the wild-type strain and the double Deltayor1, Deltaycf1 deleted strain was much more sensitive to cadmium than each single Deltayor1 or Deltaycf1 deletant. Overexpression of Yor1p in a Deltaycf1 strain restores full growth. Cadmium uptake measurements show that Deltaycf1 yeast strains expressing or overexpressing Yor1p store less cadmium than the corresponding Deltaycf1, Deltayor1 strain. The strains expressing Yor1p display an energy-dependent efflux of cadmium estimated for the yeast overexpressing Yor1p to be about 0.02 nmol 109Cd/mg protein/min. Yeast cells loaded with radiolabeled glutathione and then with radioactive cadmium displayed a twice-higher efflux of glutathione than that of cadmium suggesting that Yor1p transports both compounds as a bis-glutathionato-cadmium complex. All together, these results suggest that in addition to being accumulated in the yeast vacuole by Ycf1p, cadmium is also effluxed out of the cell by Yor1p.  相似文献   

15.
ABT-378, a new human immunodeficiency virus type 1 (HIV-1) protease inhibitor which is significantly more active than ritonavir in cell culture, is currently under investigation for the treatment of AIDS. Development of viral resistance to ABT-378 in vitro was studied by serial passage of HIV-1 (pNL4-3) in MT-4 cells. Selection of viral variants with increasing concentrations of ABT-378 revealed a sequential appearance of mutations in the protease gene: I84V-L10F-M46I-T91S-V32I-I47V. Further selection at a 3.0 μM inhibitor concentration resulted in an additional change at residue 47 (V47A), as well as reversion at residue 32 back to the wild-type sequence. The 50% effective concentration of ABT-378 against passaged virus containing these additional changes was 338-fold higher than that against wild-type virus. In addition to changes in the protease gene, sequence analysis of passaged virus revealed mutations in the p1/p6 (P1′ residue Leu to Phe) and p7/p1 (P2 residue Ala to Val) gag proteolytic processing sites. The p1/p6 mutation appeared in several clones derived from early passages and was present in all clones obtained from passage P11 (0.42 μM ABT-378) onward. The p7/p1 mutation appeared very late during the selection process and was strongly associated with the emergence of the additional change at residue 47 (V47A) and the reversion at residue 32 back to the wild-type sequence. Furthermore, this p7/p1 mutation was present in all clones obtained from passage P17 (3.0 μM ABT-378) onward and always occurred in conjunction with the p1/p6 mutation. Full-length molecular clones containing protease mutations observed very late during the selection process were constructed and found to be viable only in the presence of both the p7/p1 and p1/p6 cleavage-site mutations. This suggests that mutation of these gag proteolytic cleavage sites is required for the growth of highly resistant HIV-1 selected by ABT-378 and supports recent work demonstrating that mutations in the p7/p1/p6 region play an important role in conferring resistance to protease inhibitors (L. Doyon et al., J. Virol. 70:3763–3769, 1996; Y. M. Zhang et al., J. Virol. 71:6662–6670, 1997).  相似文献   

16.
17.
The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and V(max) of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane.  相似文献   

18.
The ATP binding cassette (ABC) transporters are important in human health and disease and represent the largest family of transmembrane proteins; however, their highly hydrophobic nature complicates the use of standard biochemical approaches to identify interacting proteins. Here, we report the development of a modified version of the split-ubiquitin membrane yeast two-hybrid (MYTH) technology using genomically integrated "bait" constructs, hence the designation iMYTH. We used iMYTH in a library-screening format and identified six potential interacting partners of the yeast ABC transporter Ycf1p. Strains deleted for several of these genes result in arsenite sensitivity similar to a Deltaycf1 strain. Transport assays show that one of these, Tus1p, a guanine nucleotide exchange factor (GEF) for the small GTPase Rho1p, is a Rho1p-dependent-positive regulator of Ycf1p. Our study provides proof of principle that iMYTH is an ideal methodology to identify physiological interactors and regulators of ABC transporters and other yeast transmembrane proteins.  相似文献   

19.
Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.  相似文献   

20.
In a wild-type strain of Saccharomyces cerevisiae, cadmium induces the activities of both gamma-glutamyl transferase (gamma-GT) and glutathione transferase 2 (Gtt2). However, Gtt2 activity did not increase under gamma-GT or Ycf1 deficiencies, suggesting that the accumulation of glutathione-cadmium in the cytosol inhibits Gtt2. On the other hand, the balance between the cytoplasmic and vacuolar level of glutathione seems to regulate gamma-GT activity, since this enzyme was not activated in a gtt2 strain. Taken together, these results suggest that gamma-GT and Gtt2 work together to remove cadmium from the cytoplasm, a crucial mechanism for metal detoxification that is dependent on glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号