首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The measurement of ligand receptor binding parameters for G-protein-coupled receptors is indispensable in the drug discovery process. Traditional ligand receptor binding assays require scale-up of cells and membrane preparations, which is an expensive and time-consuming process. In this report, the authors describe the development of a homogeneous live-cell binding assay for GPCRs using a fluorophore-labeled nonpeptide ligand. The model assay used Cy3B-labeled telenzepine and Chinese hamster ovary cells expressing M1 muscarinic acetylcholine receptors. This homogeneous live-cell fluorescence binding assay format is superior to the traditional binding methods because it measures binding of a ligand to intact receptors on living cells. The assay requires no washing or separation steps, thereby allowing a real-time kinetic readout for the determination of ligand association and dissociation from the intact receptors. The results also suggest that miniaturization is feasible without compromising the data quality.  相似文献   

2.
Peroxisome proliferator-activated receptors (PPARs) and other members of the nuclear hormone receptor family are important drug targets for the treatment of metabolic diseases. PPARalpha and PPARgamma play crucial roles in lipid and glucose metabolism, respectively. Therefore, screening methods that help to rapidly identify activators of these receptors should be of considerable value. A homogeneous fluorescence polarization (FP) ligand binding assay capable of rapidly identifying ligands that bind to both PPARalpha and PPARgamma has been developed using purified PPARalpha or PPARgamma ligand binding domains and a fluorescein-labeled analog (FLA) of a potent dual PPARalpha/gamma activator. FLA activator showed good binding affinity toward both PPARalpha (K(i)=0.7microM) and PPARgamma (K(i)=0.4microM). The binding of FLA activator was rapid and reached a plateau within 10 min. The resulting FP signal was stable for at least 18h. The FP binding assay performed robustly in a 384-well format, and the average Z' value was 0.77. There was a good correlation between the binding potency (IC(50) values) and rank order of binding potency for a panel of standard PPAR ligands obtained in FP binding assay and scintillation proximity assay or gel filtration binding assays using (3)H-labeled PPARalpha (r(2)=0.99) and PPARgamma (r(2)=0.99) ligands. There was also a good correlation of IC(50) values obtained by FP binding assay and scintillation proximity assay for the clinically used PPAR activators. Thus, the FP binding assay with a single fluorescein-labeled PPARalpha/gamma dual activator offers a homogeneous nonradioactive, sensitive, robust, and less expensive high-throughput assay for detecting compounds that bind to both PPARgamma and PPARalpha. Using this FP binding assay, we have identified a large number of PPARalpha/gamma dual activators. A similar assay platform may be easily adapted to other members of the nuclear hormone receptor family.  相似文献   

3.
We have developed a novel fluorescence-based homogeneous binding assay for high-throughput screening of chemical compounds. In this assay, a Cy5- or Cy5.5-labeled ligand binds to receptor immobilized on a particle, either a bead or a cell. The resulting localized signal can be detected by a modified microvolume fluorimeter (MVF). When a molecule which competes with the labeled ligand is present, the localized fluorescence on cells or beads is reduced. Image processing software enumerates events and analyzes fluorescence intensity. We describe MVF assays for the IL-1 and IL-5 receptors. Using synthetic peptides with a range of affinities for the IL-1 receptor, we obtained IC(50) data consistent with those determined by radioligand binding assays. Because the image processing software can discriminate among events with different diameters, we were able to develop a multiplex assay, in which the IL-1R and IL-5R assays were carried out in the same well with each receptor immobilized on a different size of bead. IC(50) values generated in the multiplex assay for ligands specific to each receptor were comparable to those determined independently. Finally, similar IC(50) values were obtained in a 16-microl volume in an 864-well plate. This homogeneous, nonradioactive, miniaturizable, and multiplex-capable assay holds much promise for screening of combinatorial libraries and compound collections.  相似文献   

4.
A homogenous high-throughput assay has been developed to measure the binding between nuclear receptors and test compounds. This assay applies a fluorescence polarization (FP) detection method using human glucocorticoid receptor (GR) as a model system. Crude receptor extract, which requires no additional purification, is used in the assay. The binding conditions (i.e., DMSO tolerance, temperature, stability, and variability) have been investigated and validated. At the optimized conditions, a signal-to-background ratio of 2:1 and a Z'-factor of 0.7 was achieved in a 384-well format. Several known strong and weak GR ligands have been evaluated in this system. Possible interference of fluorescent compounds and methods to identify false positives are also discussed. This FP-based assay system can potentially be used for many soluble nuclear receptors in high-throughput binding assays.  相似文献   

5.
Dimeric 14-3-3 proteins exert diverse functions in eukaryotes by binding to specific phosphorylated sites on diverse target proteins. Critical to the physiological function of 14-3-3 proteins is the wide range of binding affinity to different ligands. The existing information of binding affinity is mainly derived from nonhomogeneous-based methods such as surface plasmon resonance and quantitative affinity precipitation. We have developed a fluorescence anisotropy peptide probe using a genetically isolated 14-3-3-binding SWTY motif. The synthetic 5-(and-6)-carboxyfluorescein(FAM)-RGRSWpTY-COOH peptide, when bound to 14-3-3 proteins, exhibits a seven-fold increase in fluorescence anisotropy. Different from the existing assays for 14-3-3 binding, this homogeneous assay tests the interaction directly in solution. Hence it permits more accurate determination of the dissociation constants of 14-3-3 binding molecules. Protocols for a simple mix-and-read format have been developed to evaluate 14-3-3 protein interactions using either purified recombinant 14-3-3 fusion proteins or native 14-3-3s in crude cell lysate. Optimal assay conditions for high-throughput screening for modulators of 14-3-3 binding have been determined.  相似文献   

6.
In this article, the study of 3 different angiotensin II type 1 (AT(1)) receptor binding assays in terms of reproducibility, robustness, and feasibility for high-throughput screening (HTS) is described. The following methods were used: a nonhomogeneous filtration assay in a 96-well format using CHO-AT(1) cell membranes and 2 homogeneous assays, which include the commercially available ScreenReady Target for the AT(1) receptor and the wheat germ agglutinin (WGA) Flashplate, which was coated "in-house" with the CHO-AT(1) cell membranes. Receptors were labeled with [(125)I]-Sar(1)-Ile(8)-angiotensin II, and radioligand binding was displaced using the antagonist losartan and the natural agonist angiotensin II. Reproducible K(d), B(max), and K(i) values and good total binding/nonspecific binding (TB/NSB) ratios were obtained with both the ScreenReady Targets and the filtration assay, whereas the WGA Flashplates showed unacceptably high nonspecific binding and high variation when applied as a homogeneous assay. However, when applied as a heterogeneous assay (i.e., when a wash step at the end of the assay is included), the results were significantly better. Interestingly, ligand affinities were consistently lower in Flashplate-based assays than in the filtration assay. This may be due to the immobilization of the receptors onto the solid surface of the plate, affecting their conformation. In terms of reproducibility, robustness, and feasibility for HTS, the authors conclude that the ScreenReady Target plates are most suitable for AT(1) receptor binding screening.  相似文献   

7.
A high-throughput solid-phase platform for ligand-binding assays using microtiter plates (Scintiplates) has been developed using the scintillation proximity assay principle. The system has been developed using human alpha(2B)-adrenergic receptor (alpha(2B)-AR) expressed from Semliki Forest virus vectors in CHO cells. Alpha(2B)-AR bind natural (adrenaline and noradrenaline) and synthetic ligands with different affinities to mediate a variety of physiological and pharmacological responses. Antagonist radioligands were used for the binding experiments, and the values obtained for the binding constants with the Scintiplate system are in good agreement with those obtained by the traditional filter-binding assay system. The Scintiplate assay offers the advantages of a high-throughput format over the filter-binding assay and is amenable for screening many compounds rapidly for generation of leads.  相似文献   

8.
G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor–ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs.  相似文献   

9.
Receptor-ligand interactions play a crucial role in biological systems and their measurement forms an important part of modern pharmaceutical development. Numerous assay formats are available that can be used to screen and quantify receptor ligands. In this review, we give an overview over both radioactive and non-radioactive assay technologies with emphasis on the latter. While radioreceptor assays are fast, easy to use and reproducible, their major disadvantage is that they are hazardous to human health, produce radioactive waste, require special laboratory conditions and are thus rather expensive on a large scale. This has led to the development of non-radioactive assays based on optical methods like fluorescence polarization, fluorescence resonance energy transfer or surface plasmon resonance. In light of their application in high-throughput screening environments, there has been an emphasis on so called "mix-and-measure" assays that do not require separation of bound from free ligand. The advent of recombinant production of receptors has contributed to the increased availability of specific assays and some aspects of the expression of recombinant receptors will be reviewed. Applications of receptor-ligand binding assays described in this review will relate to screening and the quantification of pharmaceuticals in biological matrices.  相似文献   

10.
The receptors for the glycoprotein hormones are unique in having a large extracellular domain that is responsible for mediating ligand binding. We describe the characterization, validation, and application of a solid-phase radioligand binding assay that can be used to assess the interaction of peptides and small molecules at the extracellular domain (ECD) of the follicle-stimulating hormone receptor (FSHR). The assay utilizes a C-terminal tag on the FSHR-ECD, which is used to capture the ECD and position it in a sterically favorable orientation on a solid-phase platform. Competition experiments with the cognate ligand, FSH, indicated that the interaction at the FSHR-ECD using the solid-phase assay was comparable to the full-length receptor assayed using a standard filtration assay. The utility of the assay was evaluated by competing several peptides and a small molecule for both the full-length FSHR and the FSHR-ECD. The solid-phase capture format allowed for the establishment of an assay to specifically evaluate compounds that interact at the ECD or require the full-length receptor, thereby facilitating structure-activity studies. This assay format should be applicable to the other receptors of this family.  相似文献   

11.
12.
Homogeneous luminescence-based microplate assays are desirable in high-throughput screening of new nuclear receptor regulators. Time-resolved fluorescence resonance energy transfer (TR–FRET) assays provide high sensitivity due to low background signal. The TR–FRET concept requires labeling of both ligand and receptor, making the assay format and its development relatively expensive and complex compared with single-label methods. To overcome the limitations of the multilabel methods, we have developed a single-label method for estrogen receptor (ER)–ligand binding based on quenching resonance energy transfer (QRET), where estradiol labeled with luminescent europium(III) chelate (Eu–E2) is quenched using soluble quencher molecules. The luminescence signal of Eu–E2 on binding to full-length ER is protected from quenching while increasing competitor concentrations displace Eu–E2 from the receptor, reducing the signal. The QRET method was paralleled with a commercial fluorescence polarization (FP) assay. The measured signal-to-background (S/B) values for estradiol, estrone, fulvestrant, and tamoxifen obtained for the QRET assay (5.8–9.2) were clearly higher than the S/B values for the FP assay (1.3–1.5). A Kd value of 30 nM was calculated for binding of Eu–E2 to ER from a saturation binding isotherm. The QRET method provides an attractive new single-label assay format for nuclear receptor ligand screening.  相似文献   

13.
Retinoid X receptor (RXR) agonists are candidate agents for the treatment of metabolic syndrome and type 2 diabetes via activation of peroxisome proliferator-activated receptor (PPAR)/RXR or liver X receptor (LXR)/RXR-heterodimers, which control lipid and glucose metabolism. Reporter gene assays or binding assays with radiolabeled compounds are available for RXR ligand screening, but are unsuitable for high-throughput screening. Therefore, as a first step towards stabilizing a fluorescence polarization (FP) assay system for high-throughput RXR ligand screening, we synthesized fluorescent RXR ligands by modification of the lipophilic domain of RXR ligands with a carbostyril fluorophore, and selected the fluorescent RXR agonist 6-[ethyl(1-isobutyl-2-oxo-4-trifluoromethyl-1,2-dihydroquinolin-7-yl)amino]nicotinic acid 8d for further characterization. Compound 8d showed FP in the presence of RXR and the FP was decreased in the presence of the RXR agonist LGD1069 (2). This compound should be a lead compound for use in high-throughput assay systems for screening RXR ligands.  相似文献   

14.
We have developed a homogeneous high-capacity assay format for measuring integrin- and selectin-dependent cell binding to immobilized ligand using V-well microtiter plates. 2',7'-Bis(2-carboxyethyl)-5-(and-6)-carboxylfluorescence, acetoxymethylester-labeled cells are added to ligand-coated V-shaped microtiter wells. Bound cells are separated from free cells using centrifugal force to produce shear stress. Nonadherent cells accumulate in the nadir of the well and are measured using a fluorescence plate reader. Antibody or low-molecular-weight inhibitors of either the ligand or the cell surface receptor result in less cell binding, more cells in the pellet, and increased signal. The optimization and validation of the very late antigen-4/vascular cell adhesion molecule-1 assay is described in detail. We demonstrate that this assay can be rapidly adapted to measure other integrin- and selectin-mediated interactions. This assay format has several advantages over conventional assays. The centrifugal process is biologically relevant and eliminates the washing steps to remove nonadherent cells that can cause well-to-well and plate-to-plate variation. Because the assay is robust with a high signal-to-noise ratio and low variability, it is ideally suited for studying multiple parameters of cell adhesion and for high capacity screening.  相似文献   

15.
Using caspase-3 as a model, the authors have developed a strategy for highly sensitive, homogeneous protease assays suitable for high-throughput, automated applications. The assay uses peptide-conjugated aminoluciferin as the protease substrate and a firefly luciferase that has been molecularly evolved for increased stability. By combining the proluminescent caspase-3 substrate, Z-DEVD-aminoluciferin, with a stabilized luciferase in a homogeneous format, the authors developed an assay that is significantly faster and more sensitive than fluorescent caspase-3 assays. The assay has a single-step format, in which protease cleavage of the substrate and luciferase oxidation of the aminoluciferin occurs simultaneously. Because these processes are coupled, they rapidly achieve steady state to maintain stable luminescence for several hours. Maximum sensitivity is attained when this steady state occurs; consequently, this coupled-enzyme system results in a very rapid assay. The homogeneous format inherently removes trace contamination by free aminoluciferin, resulting in extremely low background and yielding exceptionally high signal-to-noise ratios and excellent Z' factors. Another advantage of a luminescent format is that it avoids problems of cell autofluorescence or fluorescence interference that can be associated with synthetic chemical and natural product libraries. This bioluminescent, homogeneous format should be widely applicable to other protease assays.  相似文献   

16.
A lanthanide-based assay for ligand-receptor interactions provides an attractive alternative to the traditional radiolabeled determinations in terms of sensitivity, throughput, and biohazards. We designed and tested peptide ligands modified with an Eu-DTPA chelate. These labeled ligands were used in competitive binding assays with results comparable to those obtained using the traditional radiolabeled binding assays. The sensitivity of time-resolved fluorescence is sufficient to detect attomoles of europium, allowing assays in 96-well plates, compared with 30-mm dishes for (125)I binding assays to whole cells. We verified binding of Eu-DTPA-NDP-alpha-MSH to cells overexpressing the human melanocortin-4 receptor. The Eu-labeled ligand bound to these cells with an affinity similar to that of unlabeled NDP-alpha-MSH and was used to optimize a competitive binding assay. The lanthanide-based assays provided superior results with higher throughput and eliminated the need for radioactive waste disposal. This assay is appropriate for high-throughput screening of ligand libraries.  相似文献   

17.
18.
G protein-coupled receptors (GPCRs) represent the single largest molecular target of therapeutic drugs currently on the market, and are also the most common target in high throughput screening assays designed to identify potential new drug candidates. A large percentage of these assays are now formatted as radioligand binding assays. Fluorescence polarization ligand binding assays can offer a non-rad alternative to radioligand binding assays. In addition, fluorescence polarization assays are a homogenous format that is easy to automate for high throughput screening. We have developed a series of peptide ligands labeled with the fluorescent dye BODIPY TMR whose binding to GPCRs can be detected using fluorescence polarization methodology. BODIPY TMR has advantages over the more commonly used fluorescein dye in high throughput screening (HTS) assays due to the fact that its excitation and emission spectra are red-shifted approximately 50 nm relative to fluorescein. Assays based on BODIPY TMR ligands are therefore less susceptible to interference from tissue auto-fluorescence in the assay matrix, or the effects of colored or fluorescent compounds in the screening libraries. A series of BODIPY TMR labeled peptides have been prepared that bind to a range of GPCRs including melanin concentrating hormone, bradykinin, and melanocortin receptors. Conditions have been optimized in order to utilize a comparable amount of receptor membrane preparation as is used in a radioligand binding assay. The assays are formatted in 384-well microplates with a standard volume of 40 microL. We have compared the assays across the different fluorescence polarization (FP) readers available to determine the parameters for each instrument necessary to achieve the required precision.  相似文献   

19.
ABSTRACT

G protein-coupled receptors (GPCRs) represent the single largest molecular target of therapeutic drugs currently on the market, and are also the most common target in high throughput screening assays designed to identify potential new drug candidates. A large percentage of these assays are now formatted as radioligand binding assays. Fluorescence polarization ligand binding assays can offer a non-rad alternative to radioligand binding assays. In addition, fluorescence polarization assays are a homogenous format that is easy to automate for high throughput screening. We have developed a series of peptide ligands labeled with the fluorescent dye BODIPY® TMR whose binding to GPCRs can be detected using fluorescence polarization methodology. BODIPY® TMR has advantages over the more commonly used fluorescein dye in high throughput screening (HTS) assays due to the fact that its excitation and emission spectra are red-shifted approximately 50 nm relative to fluorescein. Assays based on BODIPY® TMR ligands are therefore less susceptible to interference from tissue auto-fluorescence in the assay matrix, or the effects of colored or fluorescent compounds in the screening libraries. A series of BODIPY® TMR labeled peptides have been prepared that bind to a range of GPCRs including melanin concentrating hormone, bradykinin, and melanocortin receptors. Conditions have been optimized in order to utilize a comparable amount of receptor membrane preparation as is used in a radioligand binding assay. The assays are formatted in 384-well microplates with a standard volume of 40 µL. We have compared the assays across the different fluorescence polarization (FP) readers available to determine the parameters for each instrument necessary to achieve the required precision.  相似文献   

20.
Two homogeneous proximity assays for tyrosine kinases, scintillation proximity assay (SPA) and homogeneous time-resolved fluorescence (HTRF), have been developed and compared. In both formats, the kinase assay was performed using biotinylated peptide substrate, ATP ([33P]ATP in the case of SPA), and tyrosine kinase in a 96-well assay format. After the kinase reaction was stopped, streptavidin-coated SPA beads or europium cryptate-labeled anti-phosphotyrosine antibody and streptavidin-labeled allophycocyanin were added as detection reagents for SPA or HTRF assays, respectively. Since the assay signal was detected only when the energy donor (radioactivity for SPA, Eu for HTRF) and the energy acceptor molecules (SPA beads for SPA, allophycocyanin for HTRF) were in close proximity, both assays required no wash or liquid transfer steps. This homogeneous ("mix-and-measure") nature allows these assays to be much simpler, more robust, and easier to automate than traditional protein kinase assays, such as a filter binding assay or ELISA. Both assays have been miniaturized to a 384-well format to reduce the assay volume, thereby saving the valuable screening samples as well as assay reagents, and automated using automated pipetting stations to increase the assay throughput. Several advantages and disadvantages for each assay are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号