首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
2.
B J Wilcox  J R Unnerstall 《Neuron》1991,6(3):397-409
We have localized acidic fibroblast growth factor (aFGF) mRNA in the developing and adult rat brain using in situ hybridization histochemistry. Prenatally, hybridization to aFGF mRNA was observed throughout the brain, with the strongest signal associated with cells of the developing cortical plate. Postnatally, labeling was localized to specific neuronal populations. In the hippocampus, labeling of the pyramidal cell layer and dentate granule cells was observed and became progressively more intense with maturation. Labeling was also observed in both the external and internal granule cell layers of the developing cerebellum. Pyramidal cells of the neocortex as well as neurons of the substantia nigra and locus ceruleus also express aFGF. This pattern persists into adulthood, although the intensity of the labeling is significantly reduced in the adult brain. These patterns of hybridization correlate with specific developmental events and suggest that aFGF plays a significant role in both central nervous system development and neuronal viability in the adult brain.  相似文献   

3.
4.
Abstract: Our previous studies indicate that, in certain non-catecholamine (CA) neurons, expression of the gene for the CA biosynthetic enzyme tyrosine hydroxylase (TH) can be initiated by the obligatory interaction of acidic fibroblast growth factor (aFGF) and a CA activator. In this study, we sought to determine whether these same differentiation factors also play a role in regulating existing TH expression in CA neurons. Thus, the effects of exogenous aFGF and CAs on TH were studied in developing or toxin-damaged dopamine (DA) neurons from the embryonic day 15 rat ventral midbrain, where it was likely to be at physiologically low levels. Cultures were incubated with various concentrations of aFGF, DA, or aFGF and DA. Some cultures were first damaged with 2.5 µ M 1-methyl-4-phenylpyridinium. In developing DA neurons, an 80% increase in TH activity was found only after cotreatment with aFGF (100 ng/ml) and DA (1 µ M ) or other monoamines. Likewise, in damaged DA neurons, aFGF and DA reversed the 50% loss in TH activity caused by toxin. This was observed within 4 h of treatment and was not associated with changes in the number or appearance of DA neurons, suggesting a biochemical rather than a trophic effect. Pretreatment with protein or RNA synthesis inhibitors eliminated the increase. In PC12 cells, where TH is highly expressed, activity was unaltered by treatment. We conclude that the aFGF and CAs may be involved in not only the initiation but also the regulation of TH.  相似文献   

5.
Nearly thirty growth and trophic factors that have been purified from mammalian tissues in the last 15 yr have been found to share chemical identity. The results of their chemical purification and molecular cloning show that they are two distinct polypeptides (Mr 17,400 and 18,400), each of which gives rise to families of smaller size peptides. These peptides share a common affinity for heparin. In view of this property, a common nomenclature for the two principle peptide growth factors (heparin-binding growth factor classes 1 and 2; HBGF-1 and -2) has been proposed. However, the names acidic and basic Fibroblast Growth Factors (aFGF,bFGF), which were applied to them originally to describe their mitogenic activity, are more commonly in use and will therefore be adopted in this review. Brain tissue is one of the richest sources of FGFs. It has been used as a starting point for their chemical purification and to prepare genomic libraries for molecular cloning of the aFGF and bFGF genes. There is increasing evidence that these growth factors, expressed in neurons and glia throughout the mammalian nervous system, are implicated in neuronal cell proliferation, differentiation, and histogenesis. FGFs have a strong affinity not only for heparin, but also for the related heparan sulphate proteoglycans that are abundant in neural tissues. This fact provides a clue to the importance of tissue-associated proteoglycans in mediating the release, sequestration, and activation of FGFs and the modulation of their receptor binding and bioactivity. The relevance of FGFs to neural development and their mechanisms of action in neurons will be considered in light of the existing literature describing their biological properties and activity in mesodermal cell types. Evidence is reviewed showing that FGFs have in vivo biological activity, ameliorating the degeneration of central and peripheral neurons after axotomy. The presence and implications of high levels of FGFs in adult mammalian brain provides a direction for future research into neural regeneration. The bioactivity of FGFs in neural tissue may not depend on the regulation of their expression per se, but on the subregional modification of their interaction with proteoglycans.  相似文献   

6.
When added to a collagen-filled nerve guide, purified acidic fibroblast growth factor (aFGF) increased the number of myelinated axons that regenerated across a 5-mm nerve gap distance. In addition, a greater number of primary sensory and motor neurons extended axons through the nerve guide in animals treated with aFGF. Thus the effect of aFGF on peripheral nerve regeneration is not simply an increase in axonal branching within the nerve guide tube. This is the first highly purified growth factor since nerve growth factor that has been shown to promote nerve regeneration in vivo. This experimental model provides a convenient and quantitative means to assess the effects of putative neuronotropic factors on peripheral nerve regeneration in vivo.  相似文献   

7.
Acidic fibroblast growth factor (aFGF) is a heparin-binding polypeptide that is a mitogen for endothelial cells and glial cells, as well as a differentiation factor for PC12 cells and certain neurons. We show here that aFGF is as potent as nerve growth factor (NGF) in stimulating both neuritic outgrowth and proliferation in adrenal chromaffin cells from young rats, but it fails to support long-term survival. Heparin strongly potentiates aFGF-dependent neuritic outgrowth but not aFGF-dependent proliferation. As is the case with NGF, phorbol myristate acetate depresses aFGF-induced cell division and increases the outgrowth of neurites. On the other hand, dexamethasone antagonizes neuritic outgrowth elicited by both NGF and aFGF but inhibits only proliferation induced by NGF. The effects of basic FGF (bFGF) are similar but not identical to those of aFGF. Thus the regulatory pathways controlled by aFGF, bFGF, and NGF are partially distinct.  相似文献   

8.
This review briefly describes the cellular distribution and documented roles of the transforming growth factor (TGF)-beta isoforms TGF-beta2 and -beta3 in the central and peripheral nervous system. TGF-beta2 and -beta3 are coexpressed in developing radial glial and mature astroglial and Schwann cells, as well as in subpopulations of differentiated neurons, most prominently in cortical, hippocampal, and brainstem/spinal cord motor neurons. In vitro studies have suggested a number of potential, physiologically relevant functions for TGF-betas including regulation of astroglial cell proliferation, expression of adhesion molecules, survival promoting roles for neurons in combination with established neurotrophic factors, and differentiative actions on neurons.  相似文献   

9.
10.
Acidic fibroblast growth factor (aFGF), a polypeptide with a mol. wt of approximately 16,000, is a potent mitogen for a variety of cells and shares 55% amino acid sequence identity with basic FGF. The recent isolation of three new oncogenes which share 35-45% amino acid sequence similarity with the FGFs suggests that the coding sequences for the FGFs themselves may be oncogenic under certain circumstances. To test this hypothesis, we cotransfected 3T3 NR6 cells with factors expressing the aFGF coding sequence and the bacterial neomycin gene. The aFGF produced by cotransfected cells was found only in the cellular homogenate and not in medium conditioned by the cells. Cells expressing aFGF grew to 10 times the density of control cells at saturation and were multilayered and disorganized, similar to transformed cells. The cotransfected cells do not grow in soft agar, but show enhanced soft agar growth relative to controls in the presence of added aFGF and heparin. The aFGF-producing cells formed small, non-progressive tumors when injected subcutaneously into nude mice. Our data suggest that expression of aFGF in NR6 cells results in enhanced growth, and that several traits characteristic of the transformed phenotype are partially expressed.  相似文献   

11.
12.
13.
Discovered only 40 years ago, nerve growth factor is the prototypic neurotrophic factor. By binding to specific receptors on certain neurons in the peripheral nervous system and brain, nerve growth factor acts to enhance their survival, differentiation, and maintenance. In recent years, many additional neurotrophic factors have been discovered; some are structurally related to nerve growth factor while others are distinct from it. The robust actions of neurotrophic factors have suggested their use in preventing or lessening the dysfunction and death of neurons in neurologic disorders. We review the progress in defining neurotrophic factors and their receptors and in characterizing their actions. We also discuss some of the uses of neurotrophic factors in animal models of disease. Finally, we discuss how neurotrophic factors could be implicated in the pathogenesis of neurologic disorders.  相似文献   

14.
During the last ten years, several groups, including the present authors, have detected growth factor activities in various ocular tissues, and the presence of a ubiquitous Eye-Derived Growth Factor (EDGF) has been described. More recently, isolation and characterization of this growth factor activity from the retina led to the identification of two molecules. These molecules were shown to be identical to other growth factors isolated from neuronal and non-neuronal tissues and are now designated as acidic and basic fibroblast growth factor (aFGF, bFGF). The biological function and the reason for the ubiquitous distribution of these factors remain unclear. Understanding may be improved by quantification of this distribution in various tissues during development. In the present study, specific polyclonal antibodies were raised against acidic FGF, aFGF was determined in various ocular tissues by enzyme immunoassay, and the localization of immunoreactive aFGF by immunohistological staining with fluorescent antibodies or with enzyme- or gold-labeled antibodies was studied. In almost all tissues tested aFGF was found; but the retina, cornea, and vitreous body contained the highest levels of aFGF per gram of tissue. In the retina, aFGF was associated primarily with the nerve fiber layer and the inner and outer segments of the photoreceptors, whereas corneal aFGF was detected in the cytoplasma of the basal layer of epithelial cells.  相似文献   

15.
16.
17.
18.
Acidic fibroblast growth factor (aFGF) is a heparin binding protein that displays pleiotropic activity. The purpose of this study was to document the presence of the translated aFGF product, its mRNA, and its location in the colon. mRNA was extracted from bovine large intestine and reverse transcribed to cDNA. Nested-primer PCR was used to determine the presence of mRNA using primers homologous to the previously published bovine aFGF cDNA. Purification of translated aFGF was performed using an established HPLC protocol. Western blot analysis of the HPLC fractions was performed using two epitope-independent antibodies against aFGF. Immunohistochemistry employed these antibodies to determine the locus of aFGF expression. The nested-primer PCR product of predicted size was homologous to the published bovine aFGF mRNA sequence, as determined by DNA sequencing. Intestinal aFGF had a mass similar to bovine aFGF isolated from other tissues, and immunocrossreacted with two peptide-based, epitope-independent anti-aFGF antisera on Western blotting. Immunohistochemical analysis of large intestine using these two independent antisera localized aFGF within the myenteric plexus. These data demonstrate that aFGF is present within the myenteric plexus of the enteric nervous system.  相似文献   

19.
New possibilities to modify function and direct repair in the central nervous system (CNS) have been established by the merger of gene transfer technology with neural transplantation. Rapid advances in viral-mediated DNA-delivery procedures permit the study of novel gene expression in neurons and glial cells. Foreign genes, transferred by a virus vector, can be used to generate new cell lines, identify transplanted cells, and express growth factors or enzymes for neurotransmitter synthesis. In addition to CNS cell types, non-neural cells are also being studied with transgene technology in the nervous system. Functional effects have been obtained with grafts of genetically modified cells in animal models of several nervous system disorders, and the recent results set the stage for potential application of these techniques to human CNS gene therapy.  相似文献   

20.
The dual function exerted by acidic fibroblast growth factor (aFGF) in a rat bladder carcinoma cell line has been explored under two different conditions of culture density. At low cell density, aFGF promotes the epithelium-to-mesenchyme transition of NBT-II cells characterized by cell dissociation, morphological changes toward a fibroblastic-like phenotype, and acquisition of cell motility. Under these conditions, NBT-II cells are unresponsive to the growth-promoting effect of aFGF. At high cell density, aFGF is a potent mitogenic factor, but its scattering activity is essentially abrogated. Slight modifications in the binding of aFGF to its specific receptors were observed at high cell density; these changes correlated with a downregulation of receptors with no apparent change in their molecular form. NBT-II cells located at the edge of artificial wounds mimicked the behavior of subconfluent cells, because they did not proliferate upon aFGF treatment. Furthermore, in large-sized NBT-II colonies, peripheral cells were the first to dissociate in response to aFGF. Altogether, our results suggest that the cellular response to multifunctional growth factors might depend on the localization within the responding cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号