首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferation of the human monocytic leukemia cell line JOSK-I is inhibited by transforming growth factor-beta (TGF-beta). Growth inhibition by TGF-beta was not due to either a toxic effect or to induction of differentiation. TGF-beta induced a cell cycle arrest at late G1 phase and was not found to be inhibitory to JOSK-I cells in S phase or G2/M. This G1 cell cycle arrest was associated with an accumulation of the unphosphorylated form of the retinoblastoma susceptibility gene product (Rb) in good correlation with inhibition of DNA synthesis. In contrast to the effects of TGF-beta, two other agents which induced a G1 arrest of JOSK-I cells had a different effect on Rb. Aphidicolin blocked cells at G1/S but could not reduce Rb phosphorylation as great as that seen with TGF-beta. 12-O-Tetradecanoylphorbol-13-acetate, an inducer of differentiation, did reduce Rb phosphorylation, but not until 72 h, when differentiation had already occurred. The identities of the Rb kinases are unknown, but recent evidence suggests that the cdc2 gene product could participate in Rb phosphorylation. Although cdc2 mRNA and total protein levels were not affected, TGF-beta inhibited the rate of translation and kinase activity of cdc2 in JOSK-I cells. These results suggest that growth inhibition of hematopoietic cells by TGF-beta is linked to suppression of Rb phosphorylation to retain Rb in an unphosphorylated, growth-inhibitory state. The suppression of Rb phosphorylation is suggested to be mediated through inhibition of cdc2 kinase activity by TGF-beta.  相似文献   

2.
Autocrine production of growth factors may contribute to the rapid and fatal proliferation of acute hematologic malignancies. We have investigated whether the more controlled growth of less aggressive malignancies such as chronic myeloid leukemia (CML) may be associated with autocrine production of growth inhibitory factors. TNF inhibits the growth of both normal and leukemic hemopoietic progenitor cells. We find that exogenous TNF reduces the viability and DNA synthesis of purified myeloid cells from patients with CML and inhibits myeloid colony formation by patient progenitor cells. However, unlike progenitor cells from normal donors, patient myeloid progenitor cells also constitutively express mRNA for TNF and secrete functional TNF protein in culture. This endogenous TNF impedes the growth of CML cells because anti-TNF mAb shown to neutralize bioactive human TNF increases CML cell DNA synthesis whereas non-neutralizing anti-TNF mAb has no effect. Production of TNF by CML cells is not associated with production of lymphotoxin (TNF-beta), IL-1 or IL-6. TNF-mediated autocrine growth inhibition may contribute to the maintenance of the stable, chronic phase of this disease and similar mechanisms may operate in other malignancies to limit tumor proliferation. Competition between autocrine growth promoting and inhibiting factors may underlie the observed differences in biologic behavior between acute and chronic malignancies.  相似文献   

3.
The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein induces growth transformation and is critical for the pathogenesis of the HTLV-1-induced adult T-cell leukemia (ATL). It stimulates the cell cycle and transactivates cellular genes. Here we show that the expression of interleukin-13 (IL-13) is upregulated as a consequence of Tax in HTLV-1-transformed T cells and ATL-derived cultures. IL-13 exerts proliferative and antiapoptotic functions and is linked to leukemogenesis, since it stimulates Hodgkin lymphoma cells by an autocrine mechanism. Overexpression of IL-13 RNA and protein was confirmed in HTLV-1-positive and Tax-transformed cells. Induction of endogenous IL-13 levels in tax-transfected Jurkat cells and in conditional Tax-expressing transformed T lymphocytes suggested that Tax can replace signals required for IL-13 synthesis. For functional analysis, the IL-13 promoter and deletion variants were cloned into luciferase reporter plasmids. Experiments with transfected human T lymphocytes revealed a 16-fold stimulation of the IL-13 promoter by Tax. Experiments with Tax mutants indicated that none of the classical transactivation pathways (SRF, CREB, and NF-kappaB) is sufficient for the transactivation; at least two different Tax functions are required for full transactivation. The IL-13 promoter is stimulated via two elements; one is a NF-AT binding P element, and the other is a putative AP-1 site. The following observations suggest that IL-13 may stimulate HTLV-1-transformed cells by an autocrine mechanism: (i) the HTLV-1-transformed cells express the IL-13 receptor on their surface, and (ii) STAT6, a downstream effector of IL-13 signaling, is constitutively activated. Thus, in summary, Tax, by transactivating the promoter, induces IL-13 overexpression that possibly leads to an autocrine stimulation of HTLV-1-infected cells.  相似文献   

4.
Primary myeloma cells rapidly apoptose as soon as they are removed from their bone-marrow environment. A likely explanation is that the tumor environment produces survival factors that may counteract a spontaneous activation of pro-apoptotic program. Additional factors may trigger cell cycling in surviving myeloma cells. Interleukin-6 (IL-6) is a well recognized myeloma cell growth factor produced mainly by the tumor environment. However, myeloma cells themselves may produce low levels of autocrine IL-6. The respective roles of paracrine versus autocrine IL-6 are a matter of debate. We investigated these roles using the XG-6 myeloma cell line whose growth is dependent on addition of exogenous IL-6, despite its weak IL-6 mRNA and protein expression. The apoptosis induced by exogenous IL-6 deprivation was blocked by transferring the Mcl-1 gene coding for an anti-apoptotic protein in XG-6 cells. An XG-6Mcl-1 cell line which can survive and grow without adding IL-6 was obtained. We show that anti-IL-6 or anti-gp130 antibodies abrogated cell cycling whereas they did not affect cell survival. These data indicate that the weak autocrine IL-6 produced by myeloma cells is sufficient to trigger cell cycling whereas their survival requires large exogenous IL-6 concentrations. This important role of autocrine IL-6 has to be considered when evaluating the mechanism of action of myeloma cell growth factors. These factors may actually block an activated pro-apoptotic program, making possible a weak production of autocrine IL-6 to promote cell cycling.  相似文献   

5.
The growth factor requirements of cloned lines representing two major subsets of CD4+ T cells were examined. The helper subset, which produces IL-4 as its autocrine growth factor, proliferates in response to IL-2 or to IL-4 in the presence of IL-1. The inflammatory subset, which produces IL-2 as its autocrine growth factor, proliferates in response to IL-2 and, in the presence of limiting amounts of IL-2, shows increased proliferation in the presence of IL-4. The inflammatory subset does not proliferate in response to IL-1 plus IL-4. This ability to respond to the combination of IL-1 plus IL-4 correlates with the presence of IL-1R on the cloned lines tested. These data suggest that IL-1 may play a controlling role in the clonal expansion of CD4+ T cells of different functional types. This, in turn, suggests means by which the immune response could be directed into humoral or cell-mediated responses.  相似文献   

6.
We engineered and expressed both a wild-type and mutant cytosolic isoform of PTPepsilon (PTPepsilonC) in murine M1 leukemic cells, which can be induced to growth arrest and monocytic differentiation by interleukin (IL)-6 and leukemia inhibitory factor (LIF). Forced expression of PTPepsilonC inhibited IL-6- and LIF-induced monocytic differentiation and apoptosis in M1 cells, whereas expression of PTPepsilonM, a transmembrane isoform of PTPepsilon, did not. PTPepsilonC expression resulted in lower levels of IL-6-induced tyrosine phosphorylation of Jak1, Tyk2, gp130, and Stat3 compared with parent cells. In M1 transfectants expressing an inactive mutant of PTPepsilonC, both tyrosine phosphorylation and apoptosis induced by IL-6 and LIF were potentiated rather than inhibited. These results suggest an important role for PTPepsilonC in negative regulation of IL-6- and LIF-induced Jak-STAT signaling.  相似文献   

7.
Human T-cell leukemia virus type 1 (HTLV-1) but not HTLV-2 is associated with adult T-cell leukemia. We found that HTLV-2 Tax2 protein stimulated reporter gene expression regulated by the interleukin (IL)-2 promoter through the nuclear factor of activated T cells (NFAT) in a human T-cell line (Jurkat). However, the activity of HTLV-1 Tax1 was minimal in this system. T-cell lines immortalized by HTLV-2 but not HTLV-1 constitutively exhibited activated NFAT in the nucleus and constitutively expressed IL-2 mRNA. Cyclosporine A, an inhibitor of NFAT activation, abrogated the induction of IL-2 mRNA in HTLV-2-immortalized T-cell lines and concomitantly inhibited cell growth. This growth inhibition was rescued by the addition of IL-2 to the culture. Furthermore, anti-IL-2 receptor antibodies significantly reduced the proliferation of HTLV-2-infected T-cell lines but not that of HTLV-1-infected cells. Our results suggest that Tax2 activates an IL-2 autocrine loop mediated through NFAT that supports the growth of HTLV-2-infected cells under low-IL-2 conditions. This mechanism would be especially important in vivo, where this autocrine mechanism establishes a nonleukemogenic life-long HTLV-2 infection. The results also suggest that differences in long-term cytokine production between HTLV-1 and HTLV-2 infection are another factor for the differences in pathogenesis.  相似文献   

8.
9.
Three human leukemia cell lines (TALL-101, AML-193, and MV4-11) that require granulocyte/macrophage-colony stimulating factor (GM-CSF) for growth in a chemically defined medium were examined for their response to recombinant human (rh) cytokines. Either rh interleukin (IL)-3 or rhGM-CSF alone supported the long term growth of all three cell lines, and the two growth factors acted synergistically to stimulate the proliferation of the early T lymphoblastic leukemia (TALL-101) and of the monocytic leukemia (AML-193) cells. However, IL-3 antagonized the proliferation of the biphenotypic B-myelomonocytic leukemia (MV4-11) cells in the presence of GM-CSF when both factors were used at very low concentrations. The rh granulocyte (G)-CSF independently supported the long and short term growth of AML-193 and MV4-11, respectively, and synergized with GM-CSF in inducing proliferation of these cells. By contrast, G-CSF did not stimulate TALL-101 cell growth and antagonized the effect of GM-CSF such that proliferation was arrested. Although neither rh macrophage (M)-CSF nor rhIL-1 alpha independently promoted proliferation of the three leukemia cell lines, these cytokines were able to either up- or down-regulate the GM-CSF-dependent growth of these cells. Taken together, these data demonstrate that leukemic cells often require the synergistic action of several cytokines for optimal growth, whereas other combinations of factors may be growth-inhibitory. This raises the possibility that multiple hemopoietic growth factors sustain or control leukemic cell proliferation also in vivo. In addition, the observation the G-CSF, M-CSF, and IL-1 alpha can, in some cases, arrest cell proliferation without inducing differentiation suggests that the programs of proliferative arrest and differentiation in leukemic cells can be dissociated.  相似文献   

10.
11.
IL-10, an anti-inflammatory cytokine, has been shown to exhibit stimulatory functions including CD14 up-regulation on human monocytic cells. CD14-mediated signaling following LPS stimulation of monocytic cells results in the synthesis of proinflammatory cytokines. Our results show that LPS-induced CD14 expression on monocytic cells may be mediated by endogenously produced IL-10. To investigate the molecular mechanism by which IL-10 enhances CD14 expression, both human monocytes and the promyelocytic HL-60 cells were used as model systems. IL-10 induced the phosphorylation of PI3K and p42/44 ERK MAPK. By using specific inhibitors for PI3K (LY294002) and ERK MAPKs (PD98059), we demonstrate that LY294002 either alone or in conjunction with PD98059 inhibited IL-10-induced phosphorylation of STAT-1 and consequently CD14 expression. However, IL-10-induced STAT-3 phosphorylation remained unaffected under these conditions. Finally, STAT-1 interfering RNA inhibited IL-10-induced CD14 expression. Taken together, these results suggest that IL-10-induced CD14 up-regulation in human monocytic cells may be mediated by STAT-1 activation through the activation of PI3K either alone or in concert with the ERK MAPK.  相似文献   

12.
Extracellular nucleotides are autocrine and paracrine cellular mediators that signal through P2 nucleotide receptors. Monocytic cells express several P2Y receptors but the role of these G protein-coupled receptors in monocytes is not known. Here, we present evidence that P2Y(6) regulates chemokine production and release in monocytes. We find that UDP, a selective P2Y(6) agonist, stimulates interleukin (IL)-8 release in human THP-1 monocytic cells whereas other nucleotides are relatively inactive. P2 receptor antagonists or P2Y(6) antisense oligonucleotides inhibit IL-8 release induced by UDP. Furthermore, UDP specifically activated IL-8 production in astrocytoma 1321N1 cells transfected with human P2Y(6). Since lipopolysaccharide has been suggested to activate P2 receptors via nucleotide release, we tested whether IL-8 production stimulated by lipopolysaccharide might result from P2Y(6) activation. P2 antagonists or apyrase, an enzyme which hydrolyzes nucleotides including UDP, inhibit IL-8 production induced by lipopolysaccharide but not by other stimuli. Furthermore, IL-8 gene expression activated by lipopolysaccharide is enhanced by P2Y(6) overexpression and inhibited by P2Y(6) antisense oligonucleotides. Thus, UDP activates IL-8 production via P2Y(6) in monocytic cells. Furthermore, lipopolysaccharide mediates IL-8 production at least in part by autocrine P2Y(6) activation. These findings indicate a novel role for P2Y(6) in innate immune defenses.  相似文献   

13.
The lipids located in the outer layer of Mycobacterium tuberculosis, which include sulfolipid, phthiocerol dimycocerosate (PDIM), diacyltrehalose, and polyacyltrehalose, may play a role in host-pathogen interactions. These lipids were purified using thin-layer chromatography, and their ability to induce proinflammatory cytokines in human monocytes and in a human acute monocytic leukemia cell line (THP-1) was examined. None of the lipids tested induced significant interleukin (IL)-12p40 or tumor necrosis factor (TNF)-alpha production in monocytic cells. Diacyltrehalose significantly inhibited lipopolysaccharide- and M. tuberculosis-induced IL-12p40, TNF-alpha, and IL-6 productions in human monocytes, whereas other lipids had no effect. However, diacyltrehalose was unable to inhibit peptidoglycan-induced IL-12p40 production. These results suggest that diacyltrehalose is a mycobacterial factor capable of modulating host immune responses.  相似文献   

14.
EBV infects human B lymphocytes and induces them to proliferate, to produce Ig, and to give rise to immortal cell lines. Although the mechanisms of B cell activation by EBV are largely unknown, the continuous proliferation of EBV-immortalized B cells is dependent, at least in part, upon autocrine growth factors produced by the same EBV-infected B cells. In the present studies we have examined the influence of monocytes on B cell activation by EBV and found that unlike peripheral blood T cells and B cells, monocytes enhance by as much as 30- to 50-fold virus-induced B cell proliferation and Ig production. Upon activation with LPS, monocytes secrete a growth factor activity that promotes both proliferation and Ig secretion in EBV-infected B cells and thus reproduces the effects of monocytes in these cultures. Unlike a number of other factors, rIFN-beta 2/B cell stimulatory factor 2 (BSF-2)/IL-6 stimulates the growth of human B cells activated by EBV in a manner similar to that induced by activated monocyte supernatants. In addition, an antiserum to IFN-beta that recognizes both IFN-beta 1 and IFN-beta 2 completely neutralizes the B cell growth factor activity of activated monocyte supernatants. These findings demonstrate that IFN-beta 2/BSF-2/IL-6 is a growth factor for human B cells activated by EBV and suggest that this molecule is responsible for B cell growth stimulation induced by activated monocyte supernatants. We have examined the possibility that IFN-beta 2/BSF-2/IL-6 might also be responsible for B cell growth stimulation by supernatants of EBV-immortalized B cells and thus may function as an autocrine growth factor. However, IFN-beta 2/BSF-2/IL-6 is not detectable in supernatants of EBV-immortalized B cells by immunoprecipitation. Also, an antiserum to IFN-beta that neutralizes IFN-beta 2/BSF-2/IL-6 fails to neutralize autocrine growth factor activity. This suggests that autocrine growth factors produced by EBV-immortalized B cells are distinct from IFN-beta 2/BSF-2/IL-6. Thus, the continuous proliferation of EBV-immortalized B cells is enhanced by either autocrine or paracrine growth factors. One of the mediators with paracrine growth factor activity is IFN-beta 2/BSF-2/IL-6.  相似文献   

15.
16.
Interleukin-34 (IL-34) is a cytokine consisting of a 39kD homodimer, shown to be a ligand for both the Macrophage Colony Stimulating Factor (M-CSF/CSF-1) receptor and the Receptor-like protein tyrosine phosphatase-zeta (RPTP-ƺ). IL-34 has been shown to promote monocyte viability and proliferation as well as the differentiation of bone marrow cells into macrophage progenitors. Published work on IL-34 involves its effects on normal hematopoietic and osteoclast progenitors. However, it is not known whether IL-34 has biologic effects in cancer, including leukemia. Here we report that the biological effects of IL-34 include induction of differential expression of Interleukins-1α and -1β as well as induction of differentiation of U937, HL-60 and THP-1 leukemia cell lines demonstrating monocyte-like characteristics. The ability of IL-34 to induce monocytic-like differentiation is supported by strong morphological and functional evidence. Cell surface markers of myeloid lineage, CD64 and CD86, remain constant while the levels of CD11b and CD71 decline with IL-34 treatment. IL-34 also induced increases in CD14 and CD68 expression, further supporting maturation toward monocytic character. IL-34-induced differentiated U937 and THP-1 cell lines exhibited biological functions such as endocytosis and respiratory burst activities. Collectively, we conclude that while IL-34 does not induce cell growth or proliferation, it is able to induce differentiation of leukemia cell lines from monoblastic precursor cells towards monocyte- and macrophage-like cells, mediated through the JAK/STAT and PI3K/Akt pathways. To our knowledge, this is the first report that IL-34 induces differentiation in human leukemic cells, let alone any cancer model.  相似文献   

17.
The product of the blr1 gene is a CXC chemokine receptor (CXCR5) that regulates B lymphocyte migration and has been implicated in myelomonocytic differentiation. The U937 human leukemia cell line was used to study the role of blr1 in retinoic acid-regulated monocytic leukemia cell growth and differentiation. blr1 mRNA expression was induced within 12 hr by retinoic acid in U937 cells. To determine whether the early induction of blr1 might regulate inducible monocytic cell differentiation, U937 cells were stably transfected with blr1 (U937/blr1 cells). Ectopic expression of blr1 caused no significant cell cycle or differentiation changes, but caused the U937/blr1 cells to differentiate faster when treated with either retinoic acid or 1alpha,25-dihydroxyvitamin D(3). Treated with retinoic acid, U937/blr1 cells showed a greater increase in the percentage of CD11b expressing cells than vector control cells. Retinoic acid also induced a higher percentage of functionally differentiated blr1 transfectants as assessed by nitroblue tetrazolium reduction. U937/blr1 cells underwent moderate growth inhibition on treatment with retinoic acid. Similar results occurred with 1alpha,25-dihydroxyvitamin D(3). Because blr1 was induced early during cell differentiation and because its overexpression accelerated monocytic differentiation, it may be important for signals controlling cell differentiation.  相似文献   

18.
The growth properties of human T-cell leukemia virus Tax1-transduced primary human T cells derived from peripheral blood lymphocytes were compared with those of the same subset of T cells transduced with a control vector. Tax1-transduced T cells exhibited slightly elevated responsiveness to externally added interleukin-2 (IL-2) and a markedly higher proliferative response to stimulation with anti-CD3 antibody. The proliferation after anti-CD3 antibody stimulation was mainly via an IL-2-independent pathway. Therefore, some other mechanism than the previously proposed IL-2 autocrine model seems to be involved in the process of deregulation of T-cell proliferation by Tax1. Moreover, Tax1-transduced T cells have continued to proliferate in medium containing IL-2 long after control T cells ceased to grow, and so they are considered to be immortalized.  相似文献   

19.
To investigate the capacity of human IL-4 to function as a B cell growth factor (BCGF), we studied its ability to promote proliferation of a selected B cell line. We show that the cell line, designated A4, proliferated in response to IL-4 in a dose-dependent manner. The A4 cells also proliferated in response to their own B cell derived growth factor (B. BCGF), suggesting autocrine-mediated growth. The ability of IL-4 to induce proliferation of the A4 cell line was dependent on the level of autocrine growth. At low cell density, IL-4 induced marked dose-dependent proliferation. However, as A4 cell density increased, the ability of IL-4 to induce proliferation was diminished. The possibility that IL-4 may be mediating the autocrine growth of A4 cells was ruled out, because A4 cell-derived BCGF failed to induce CD23/low affinity receptors for the Fc region of IgE on activated tonsillar B cells and anti-IL-4 antibody did not block B. BCGF activity. We found that IL-4 stimulation of A4 cells and activated tonsillar B cells is associated with enhanced production of B. BCGF. These data indicate that human IL-4 has the capacity to promote proliferation of the B cell line A4, and that the ability of IL-4 to function as BCGF is associated with enhanced autocrine growth of activated B cells.  相似文献   

20.
The capacity to stimulate cytokine release may be important to the long-term effects of platelet-activating factor (PAF), which has a very short half-life. Previous studies have shown that PAF stimulates interleukin 1 (IL-1) release by human monocytes. IL-1 and other cytokines produced in response to PAF may be important to the long-term effects of this short-lived lipid. The THP-1 human monocytic leukemia cell line, was used to study the mechanism by which PAF stimulates IL-1 release. PAF stimulates the release of IL-1 beta activity into THP-1 cell supernatants with a multiphasic dose-response curve very similar to that for monocytes. When THP-1 cells are treated with PAF and LPS in combination, these two stimuli interact synergistically to greatly increase the release of IL-1 activity. To assess the effect of PAF on IL-1 beta synthesis, THP-1 cell pellet proteins were separated by SDS-PAGE, blotted, and immunostained to detect IL-1 beta. Immunostaining revealed that PAF increases intracellular IL-1 beta precursor and that the combination of PAF and LPS increases IL-1 beta precursor synergistically. PAF increases IL-1 beta release mainly by increasing IL-1 beta synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号