首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Proper expression of the genes of the human beta-globin gene locus requires the associated locus control region (LCR). Structurally, the LCR is defined by the presence of four domains of erythroid-specific chromatin structure. These domains, which have been characterized as DNase I hypersensitive sites (HSs), comprise the active elements of the LCR. The major focus of this research is to define the cis -acting elements which are required for the formation of these domains of unique chromatin structure. Our previous investigations on the formation of LCR HS4 demonstrated that NF-E2 and tandem, inverted GATA binding sites are required for the formation of the native HS. Similarly arranged NF-E2 and tandem GATA sites are present within the core regions of the other human LCR HSs and are evolutionarily conserved. Using site-directed mutagenesis of human HSs 2 and 3 we have tested the hypothesis that these NF-E2 and GATA sites are common requirements for the formation of all LCR HSs. We find that mutation of these elements, and particularly the GATA elements, results in a decrease or complete loss of DNase I hypersensitivity. These data imply the presence of common structural elements within the core of each LCR HS which are required for erythroid-specific chromatin structure reorganization.  相似文献   

2.
The active elements of the beta-globin locus control region (LCR) are located within domains of unique chromatin structure. These nuclease hypersensitive sites (HSs) are characterized by high DNase I sensitivity, erythroid specificity, similar nucleosomal structure, and evolutionarily conserved clusters of cis-acting elements that are required for the formation and function of the core elements. To determine the requirements for HS core formation in the setting of nuclear chromatin, we constructed a series of artificial HS cores containing binding sites for GATA-1, NF-E2, and Sp1. In contrast to the results of previous in vitro experiments, we found that when constructs were stably integrated in mouse erythroleukemia cells the binding sites for NF-E2, GATA-1, or Sp1 alone or in any combination were unable to form core HS structures. We subsequently identified two new cis-acting elements from the LCR HS4 core that, when combined with the NF-E2, Sp1, and tandem inverted GATA elements, result in core structure formation. Both new cis-acting elements bind Sp1, and one binds erythroid Kruppel-like factor (EKLF). We conclude that in vivo beta-globin LCR HS core formation is more complex than previously thought and that several factors are required for this process to occur.  相似文献   

3.
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Molete JM  Petrykowska H  Sigg M  Miller W  Hardison R 《Gene》2002,283(1-2):185-197
The distal locus control region (LCR) is required for high-level expression of the complex of genes (HBBC) encoding the beta-like globins of mammals in erythroid cells. Several major DNase hypersensitive sites (HSs 1-5) mark the LCR. Sequence conservation and direct experimental evidence have implicated sequences within and between the HS cores in function of the LCR. In this report we confirm the mapping of a minor HS between HS3 and HS4, called HS3.2, and show that sequences including it increase the number of random integration sites at which a drug resistance gene is expressed. We also show that nuclear proteins including GATA1 and Oct1 bind specifically to sequences within HS3.2. However, the protein Pbx1, whose binding site is the best match to one highly conserved sequence, does not bind strongly. GATA1 and Oct1 also bind in the HS cores of the LCR and to promoters in HBBC. Their binding to this minor HS suggests that they may be used in assembly of a large complex containing multiple regulatory sequences.  相似文献   

14.
The human beta-globin Locus Control Region (LCR) has two important activities. First, the LCR opens a 200 kb chromosomal domain containing the human epsilon-, gamma- and beta-globin genes and, secondly, these sequences function as a powerful enhancer of epsilon-, gamma- and beta-globin gene expression. Erythroid-specific, DNase I hypersensitive sites (HS) mark sequences that are critical for LCR activity. Previous experiments demonstrated that a 1.9 kb fragment containing the 5' HS 2 site confers position-independent expression in transgenic mice and enhances human beta-globin gene expression 100-fold. Further analysis of this region demonstrates that multiple sequences are required for maximal enhancer activity; deletion of SP1, NF-E2, GATA-1 or USF binding sites significantly decrease beta-globin gene expression. In contrast, no single site is required for position-independent transgene expression; all mice with site-specific mutations in 5' HS 2 express human beta-globin mRNA regardless of the site of transgene integration. Apparently, multiple combinations of protein binding sites in 5' HS 2 are sufficient to prevent chromosomal position effects that inhibit transgene expression.  相似文献   

15.
16.
17.
18.
19.
The major distal regulatory sequence for the beta-globin gene locus, the locus control region (LCR), is composed of multiple hypersensitive sites (HSs). Different models for LCR function postulate that the HSs act either independently or synergistically. To test these possibilities, we have constructed a series of expression cassettes in which the gene encoding the enhanced green fluorescent protein (EGFP) is under the control of DNA fragments containing single and multiple HSs of the LCR. LCR DNA fragments containing only the minimal region needed for position-independent expression (HS cores) or containing cores plus flanking sequences (HS units) were compared to ascertain whether conserved sequences between the HS cores contributed to enhancement. Expression of these constructs was measured after targeted integration into three defined loci in murine erythroleukemia cells using recombinase-mediated cassette exchange. At all three marked loci, synergistic enhancement of expression was observed in cassettes containing a combination of HS2, HS3, and HS4 units. In contrast, HS2, HS3, and HS4 cores (without flanking sequences) give an activity equivalent to the sum of the activities of the individual HS cores. These data suggest a model in which an HS core plus flanking regions, bound by specific proteins, forms a structure needed for interaction with other HS units to confer strong enhancement by the LCR. The three targeted integration sites differ substantially in their permissivity for expression, but even the largest LCR construct tested could not overcome these position effects to confer equal expression at all three sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号