首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary

The ontogeny of the eyestalk neuroendocrine centers of the European lobster, Homarus gammarus, throughout embryonic development has been studied using light and electron microscopy, and the localization of specific neuroendocrine substances has been identified by immunocytochemistry. The procephalic lobes, which are the prospective eyestalks, develop progressively during embryonic development. In the nauplius stage two neuron masses are well defined. The visual structure originates from one of them and the neuroendocrine structure from the other. The four definitive optic ganglia are present at the mid-metanauplius stage and retain their appearance and location in larvae and adults. The organ of Bellonci, an internal sensory structure, appears at the mid-metanauplius stage and is mainly characterized by onion bodies. The medulla terminalis X-organ complex, an important neuroendocrine system, is present and already functional at the beginning of the embryonic metanauplius stage. Two neurohormones have been visualized immunocytochemically: the crustacean hyperglycemic hormone (CHH) and the gonad inhibiting hormone (GIH). Both neuropeptides are localized in the perikarya of neuroendocrine cells of the X-organ as well as in their tracts joining the presumptive sinus gland. However, the sinus gland has only been observed in the early larval stages just after hatching.  相似文献   

2.
In crustaceans, neuroendocrine centers are located in different structures of the nervous system. One of these structures, the X-organ-sinus gland complex of the eyestalk, produces several neuropeptides that belong to the two main functionally different families: firstly, the chromatophorotropins, and secondly, a large family comprising various closely related peptides, commonly named CHH/MIH/GIH family. This review updates some aspects of the structural, biochemical and functional properties of the main hyperglycemic neuropeptide of this family, the crustacean hyperglycemic hormone (CHH). The first part of this work is a survey of the neuroendocrine system that produces the neurohormones of the CHH/MIH/GIH family, focusing on recent reports that propose new possible neuroendocrine loci of CHH production, secondly we revise general aspects of the CHH biochemical, and structural characteristics and thirdly, we present a review of the role of CHH in the regulation of several physiological processes of crustaceans as well as new reports on the ontogenetic aspects of CHH. The review is centered only on one group of malacostracan crustaceans, the Decapoda.  相似文献   

3.
The eyestalk of Astacus leptodactylus is investigated immunocytochemically by light, fluorescence, and electron microscopy, using an antiserum raised against purified crustacean hyperglycemic hormone (CHH). CHH can be visualized in a group of neurosecretory perikarya on the medualla terminalis (medulla terminalis ganglionic X-organ: MTGX), in fibers forming part of the MTGX-sinus gland tractus, and in a considerable part of the axon terminals composing the sinus gland. Immunocytochemical combined with ultrastructural investigations led to the identification of the CHH-producing cells and the CHH-containing neurosecretory granule type.  相似文献   

4.
We studied the ontogeny of the eyestalk structure and of the L-CHH and d-Phe3-CHH synthesis in the X-organ/sinus gland (XO/SG) complex by light microscopy and immunocytochemistry in the freshwater crustacean Astacus leptodactylus. The optic ganglia start to differentiate in embryos at EI 190 microm (EI: eye index; close to 410 microm at hatching). At EI 270 microm, the three medullae (externa, interna, and terminalis) and the lamina ganglionaris are present and are organized as in the adult eyestalk. The L-CHH was localized in perikarya of neuroendocrine cells, in their tracts, and in SG from the metanauplius stage to the adult. The d-Phe3-CHH was visualized in XO perikarya, in their tracts and in SG of embryos from EI 350 microm and in all later studied stages. Co-localization of both CHH stereoisomers always occurred in the d-Phe3-CHH-producing cells. These results show that the synthesis of CHH enantiomers starts during the embryonic life in A. leptodactylus, and that the d-isomer is synthesized later than its L-counterpart. We discuss the post-translational isomerization as a way to generate hormonal diversity and the putative relation between d-Phe3-CHH synthesis and the ability to osmoregulate, occurring late during the embryonic life of Astacus leptodactylus.  相似文献   

5.
甲壳动物高血糖激素家族生理功能研究进展   总被引:6,自引:1,他引:5  
甲壳动物高血糖激素家族是甲壳动物特有的神经多肽激素家族,主要由眼柄的X-器窦腺复合体(XO-SG)合成与分泌,包括高血糖激素(CHH)、蜕皮抑制激素(MIH)、性腺抑制激素(GIH)和大颚器抑制激素(MOIH),协同调控着甲壳动物的生长、繁殖与蜕皮等生理生化过程.本文就目前CHH家族神经肽的功能研究,包括功能研究的方法、各个激素的功能以及分泌调控等研究进展作一综述.  相似文献   

6.
Molting in shrimp is controlled by the molt-inhibiting hormone (MIH) and ecdysone. MIH inhibits the synthesis of ecdysone in the Y-organ, resulting in molt suppression; it is a neuropeptide member belonging to the eyestalk CHH/MIH/GIH family. The cloning of MIH (formerly MIH-like) of the shrimp Metapenaeus ensis has been reported in a previous study. To obtain a large quantity of fusion protein for antibody production and biological assay, the cDNA encoding the shrimp MIH was inserted into the pRSET bacterial expression vector. His-tagged fusion protein was produced and purified by an Ni2+-charged affinity column. Polyclonal antibody to rMIH was subsequently obtained by immunizing rabbits with purified recombinant proteins. Results from Western blot analysis indicated that the antibody was specific. Furthermore, results from immunocytochemical analysis showed that specific cells in three different clusters of the X-organ, the sinus gland and the axonal tract of the eyestalk contain MIH. To test for the molt-inhibiting activity of rMIH, shrimp at intermolt stage were injected with rMIH and the molt cycle duration of the injected shrimp was monitored. A significant increase in molt cycle duration was recorded for the shrimp injected with the recombinant protein.  相似文献   

7.
The structure of the precursor of a molt-inhibiting hormone (MIH) of the American crayfish, Orconectes limosus was determined by cloning of a cDNA based on RNA from the neurosecretory perikarya of the X-organ in the eyestalk ganglia. The open reading frame includes the complete precursor sequence, consisting of a signal peptide of 29, and the MIH sequence of 77 amino acids. In addition, the mature peptide was isolated by HPLC from the neurohemal sinus gland and analyzed by ESI-MS and MALDI-TOF-MS peptide mapping. This showed that the mature peptide (Mass 8664.29 Da) consists of only 75 amino acids, having Ala75-NH2 as C-terminus. Thus, C-terminal Arg77 of the precursor is removed during processing, and Gly76 serves as an amide donor. Sequence comparison confirms this peptide as a novel member of the large family, which includes crustacean hyperglycaemic hormone (CHH), MIH and gonad (vitellogenesis)-inhibiting hormone (GIH/VIH). The lack of a CPRP (CHH-precursor related peptide) in the hormone precursor, the size and specific sequence characteristics show that Orl MIH belongs to the MIH/GIH(VIH) subgroup of this larger family. Comparison with the MIH of Procambarus clarkii, the only other MIH that has thus far been identified in freshwater crayfish, shows extremely high sequence conservation. Both MIHs differ in only one amino acid residue ( approximately 99% identity), whereas the sequence identity to several other known MIHs is between 40 and 46%.  相似文献   

8.
The neuro-endocrine X-organ sinus-gland complex of crustaceans produces and releases the neuropeptides of the crustacean hyperglycemic hormone (cHH)/molt-inhibiting hormone (MIH)/gonad-inhibiting hormone (GIH) family that regulate important physiological processes, such as growth, reproduction and molting. We cloned two full-length cDNAs encoding the preprocHH-A and preprocHH-B of the Norway lobster Nephrops norvegicus of 132 and 131 amino acid residues. The two cHHs differ in the preprohormone but not in the mature peptide sequence. The mature cHH was expressed in bacteria as GST fusion protein that, in bioassay, shows a hyperglycemic activity similar to that of native cHH present in an eyestalk extract.  相似文献   

9.
The eyestalk of the astacideans Orconects limosus, Nephrops norvegicus, and Homarus gammarus, and the palinuran Palinurus vulgaris, was examined with an antiserum raised against purified crustacean hyperglycemic hormone (CHH) of the astacidean species Astacus leptodactylus. A distinct immunopositive reaction occurs in a group of neurosecretory cells in the medulla terminalis ganglionic X-organ (MTGX), in the MTGX-sinus gland tractus, and in a considerable part of the sinus gland. The immunoreactive sites in the eyestalk of the investigated species correspond to the site of production, storage, and release of the CHH. Preliminary investigations with this antiserum also indicate that a positive immunoreaction can be obtained in the eyestalk of other decapod crustaceans, for example, of the brachyuran Macropipus puber and the caridean Palaemon serratus.  相似文献   

10.
11.
Crustacean Hyperglycemic Hormone Family: Old Paradigms and New Perspectives   总被引:2,自引:1,他引:1  
I present an overview of recent research on the isolation andcharacterization of members of the crustacean hyperglycemichormone (CHH) neuropeptide family. Members of this arthropod-specificfamily include CHH, molt-inhibiting hormone (MIH), vitellogenesis-inhibitinghormone (VIH), and mandibular organ-inhibiting hormone (MOIH).There are two subfamilies of this neuropeptide group, basedupon the presence or absence of a C-terminal CHH precursor-relatedpeptide. There are also sequence motif differences between thesesubfamilies. Most of the peptides comprising this neuropeptidefamily are synthesized and released by the eyestalk X-organ/sinusgland complex. Recent experiments have demonstrated the presenceof extra-eyestalk cells that produce CHH and the assignmentof additional functions to this hormone family.  相似文献   

12.
Mouse antiserum against C-terminal amide of Pem-CMG (a peptide in the family of CHH/MIH/GIH) penta-deca peptide (RPRQRNQYRAALQRLamide=CMG-15) was generated and used for localization of the peptide in tissue and extract of the eyestalk of Penaeus monodon by means of immunohistochemistry and dot-ELISA in comparison with anti-T+ antiserum (T+=YANAVQTVamide : the putative C-terminal amide of crustacean hyperglycemic hormone (CHH) of Macrobrachium rosenbergii). The anti-CMG-15 antiserum did not show cross-reactivity to T+ peptide by dot-ELISA and vice versa for anti-T+ antiserum. In dot-ELISA of eyestalk extract of P. monodon after one step separation by RP-HPLC, anti-CMG-15 antiserum recognized different peptide fractions (F38-39) from those recognized by anti-T+ antiserum (F19, 40-41 and 47-51). Most of the T+ immunoreactive fractions (except F19) show higher hyperglycemic activity than the CMG immunoreactive fractions. In immunohistochemical localization, anti-CMG antiserum recognized only 2-3 neurons in medulla terminalis X-organ complex (MTXO) with long processes terminated in the sinus gland. The CMG-immunoreactive neurons were clearly distinct from CHH containing neurons situated in the same area. This evidence confirms the existing of CMG peptide which may play distinct roles from CHHs in hormonal regulation in P. monodon.  相似文献   

13.
Summary By use of an antiserum raised against the Nterminal sequence pGlu-Leu-Asn-Phe..., common to red pigment-concentrating hormone (RPCH) of Pandalus borealis and three structurally similar insect neuropeptides, putative RPCH-immunopositive structures were revealed in the eyestalks of Carcinus maenas and Orconectes limosus and in the brain and thoracic ganglion (TG) of C. maenas. In the eyestalks, complete neurosecretory pathways were demonstrated, consisting of perikarya, axons and terminals in the neurohemal organ, the sinus gland (SG). In C. maenas approximately 20 small RPCH cells are present as a distinct group adjacent to the medulla terminalis ganglionic X-organ (MTGXO, XO). They are morphologically different from the larger XO perikarya, which contain the crustacean hyperglycemic hormone (CHH). The occurrence of both neuropeptides in distinct neurosecretory pathways was ascertained by immunologic double staining (PAP/gold) or by analysis of consecutive sections. In addition, a group of two to four larger RPCH cells is located in the proximal part of the MT. In O. limosus, RPCH cells are found in the XO. Cells corresponding to the proximal MT cells of C. maenas were not found. In both species, a few more weakly staining immunopositive perikarya were observed in clusters of cell somata of the optic ganglia. It is uncertain whether these are connected to the SG.In the brain of C. maenas, several smaller and three larger perikarya were consistently observed in the dorsal lateral cell somata adjacent to the olfactory lobes. In the optic nerve, two axons that project into the eyestalk were stained. Some axons were also observed in the ventral median neuropil of the brain. In the TG, RPCH cells were found in small numbers in median positions, i.e., in clusters of somata between the ganglia of the appendages.HPLC analysis of the red pigment-concentrating activity from the SG of C. maenas revealed that the retention time of the neuropeptide is similar but not identical to that of Pandalus borealis RPCH.  相似文献   

14.
Crustacean hyperglycemic hormone (CHH), a physiologically important neurohormone stored in the sinus gland of eyestalks, primarily regulates carbohydrate metabolism and also plays significant roles in reproduction, molting and other physiological processes. In the freshwater giant prawn, Macrobrachium rosenbergii, an injection of X-organ sinus gland (XOSG) extract evoked a hyperglycemic response, peaked in 1 h. The hyperglycemic effect of the eyestalk extract was maximal at the dose of 0.5 eyestalk equivalent. CHH fractionated by RP-HPLC, in M. rosenbergii was identified by its hyperglycemic activity and partial amino acid sequence, and the molecular weight of 8534 was determined by matrix-assisted laser desorption ionization mass spectrometry--time of flight analysis (MALDI-TOF). The amino acid sequence of the first 25 residues of CHH showed 72% homology with the first 25 residues of CHH A and CHH B of the American lobster Homarus americanus.  相似文献   

15.
Crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) are members of a major peptide family produced from the X-organ sinus gland complex in the eyestalk of crustaceans. This peptide family plays important roles in controlling several physiologic processes such as regulation of growth and reproduction. In this study the complementary DNA encoding a peptide related to the CHH/MIH/GIH family (so-called Pem-CMG) of the black tiger prawn Penaeus monodon was successfully expressed in the yeast Pichia pastoris under the control of the AOX1 promoter. The recombinant Pem-CMG was secreted into the culture medium using the -factor signal sequence; of Saccharomyces cerevisiae without the Glu-Ala-Glu-Ala spacer peptide. The amino terminus of the recombinant Pem-CMG was correctly processed as evidenced by amino-terminal peptide sequencing. The recombinant Pem-CMG was purified by reverse-phase high-performance liquid chromotography and used in a biological assay for CHH activity. The final yield of the recombinant Pem-CMG after purification was 260 µg/L of the culture medium. Both crude and purified recombinant Pem-CMG produced from P. pastoris showed the ability to elevate the glucose level in the hemolymph of eyestalk-ablated P. monodon, which demonstrates that Pem-CMG peptide functions as hyperglycemic hormone in P. monodon.  相似文献   

16.
Lee KJ  Watson RD 《Peptides》2002,23(5):853-862
In crustaceans, the synthesis of ecdysteroid molting hormones is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced by an eyestalk neuroendocrine system, the X-organ/sinus gland complex. Using sequence analysis software, two regions of the blue crab (Callinectes sapidus) MIH peptide were selected for antibody production. Two 14-mer peptides were commercially synthesized and used to generate polyclonal antisera. Western blot analysis revealed that each antiserum bound to proteins of the predicted size in extracts of C. sapidus sinus glands, and lysates of insect cells containing recombinant MIH. Thin section immunocytochemistry using either antiserum showed specific immunoreactivity in X-organ neurosecretory cell bodies, their associated axons and collaterals, and their axon terminals in the sinus gland.  相似文献   

17.
Summary

The present study deals with the location of the vitellogenesis inhibiting hormone (VIH)-producing cells in the eyestalk of the lobster Homarus americanus. In the present study, the neurosecretory pathways of VIH in Homarus, have been described immunocytochemically by use of a mouse serum against Homarus VIH. The location of the VIH cells was compared with the location of the crustacean hyperglycemic hormone (CHH) cells visualized by a rabbit serum raised against CHH of the crayfish Astacus leptodactylus. Immunocytochemical detection procedures, both at the light and electron microscopic level, revealed frequent but not complete co-localization of VIH and CHH in a variable number of the same group of perikarya. In the sinus gland, both neuropeptides were mostly demonstrated in distinct axonal endings characterized by different granule types. Postulations on the biosynthesis of these factors and suggestions concerning the processing of both neurohormones have been made.  相似文献   

18.
The neuropeptides of the crustacean hyperglycaemic hormone (CHH) family are encoded by a multigene family and are involved in a wide spectrum of essential functions. In order to characterize CHH family peptides in one of the last groups of decapods not yet investigated, CHH was studied in two anomurans: the hermit crab Pagurus bernhardus and the squat lobster Galathea strigosa. Using RT-PCR and 3' and 5' RACE methods, a preproCHH cDNA was cloned from the major neuroendocrine organs (X-organs) of these two species. Hormone precursors deduced from these cDNAs in P. bernhardus and G. strigosa are composed of signal peptides of 29 and 31 amino acids, respectively, and CHH precursor-related peptides (CPRPs) of 50 and 40 amino acids, respectively, followed by a mature hormone of 72 amino acids. The presence of these predicted CHHs and their related CPRPs was confirmed by performing MALDI-TOF mass spectrometry on sinus glands, the main neurohaemal organs of decapods. These analyses also suggest the presence, in sinus glands of both species, of a peptide related to the moult-inhibiting hormone (MIH), another member of the CHH family. Accordingly, immunostaining of the X-organ/sinus gland complex of P. bernhardus with heterologous anti-CHH and anti-MIH sera showed the presence of distinct cells producing CHH and MIH-like proteins. A phylogenetic analysis of CHHs, including anomuran sequences, based on maximum-likelihood methods, was performed. The phylogenetic position of this taxon, as a sister group to Brachyura, is in agreement with previously reported results, and confirms the utility of CHH as a molecular model for understanding inter-taxa relationships. Finally, the paraphyly of penaeid CHHs and the structural diversity of CPRPs are discussed.  相似文献   

19.
Crustacean hyperglycemic hormone (CHH) from Carcinus maenas, a 72 amino acid neuropeptide, originates in neurosecretory perikarya in the eyestalk ganglia. Poly (A)RNA was isolated from these perikarya and a cDNA library was prepared. Screening of 20,000 clones with a 26-mer oligonucleotide, corresponding to a partial sequence of CHH, yielded one positive clone with an insert of approximately 2,000 bp, which contained the complete coding sequence for a pre-pro CHH. This precursor consists of a putative 26 amino acid signal sequence, a 38 amino acid peptide of unknown function (Peptide C), and the CHH sequence at the carboxyl end. The CHH-sequence is flanked N-terminally by a Lys-Arg cleavage site and C-terminally by the tetrapeptide Gly-Arg-Lys-Lys which is followed by the stop codon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号