首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a study of the regulation of enzyme patterns in imaginal discs the aldehyde oxidase pattern was determined for some homoeotic mutations of D. melanogaster. Earlier indications that suggested that this pattern follows the determinitive state of compartments within imaginal discs were confirmed by the aldehyde oxidase (AO) pattern of both the wing and haltere discs from en1; bx3, en1; pbx, and en1; bx3 pbx larvae and the antennal discs from Antp73b and ssa larvae. We additionally analyzed whether AO activity depended on the determinative state of an entire compartment or was expressed autonomously in clones. Homozygous engrailed clones were induced by mitotic recombination. From the AO clones found in normally negative areas of the posterior compartment it was concluded that enzyme activity depended upon the determinative state of the cells and was not a function of the compartment as a whole. The results are described with reference to a scheme in which compartmental and subcompartmental selector genes are thought to determine a binary code on which AO patterns depend.  相似文献   

2.
Summary In the imaginal discs ofMusca domestica, Drosophila melanogaster, D. simulans, D. hydei, andZaprionus spec. the enzyme aldehyde oxidase (AO) appeared in a clear-cut pattern. In the leg and eye-antennal discs of these species this pattern shows a high degree of conformity, while that of the wing and haltere discs is species-specific.No aldehyde oxidase activity was detected in the imaginal discs ofCalliphora erythrocephala, Phormia regina orLucilia cuprina, but the discs of these species are characterized by grossly similar patterns of 5-nucleotidase. Since the other species studied lack this enzyme, the two enzymes may perform similar functions in the morphogenesis of the discs.The coincidence of the sharp boundary of the AO pattern in the leg and wing discs ofD. melanogaster with the boundary between the anterior and posterior disc compartments gives a strong indication for the existence of analogous compartments in other discs showing a similar sharply bounded AO pattern. Compartmentalization may be considered a general phenomenon which occurs in discs of all segments and is not restricted toD. melanogaster. From the changes in the AO pattern during disc development it can be deduced that the localisation of this enzyme is regulated by supracellular determination involving positional information.  相似文献   

3.
Aldehyde oxidase (AO) and pyridoxal oxidase (PO) distribution patterns were determined in the imaginal wing discs for a series of strains of Drosophila melanogaster heterozygous for different Minute mutations. The mutant severity ranged from very weak to strong. The results shown an inverse response of AO and PO to the expressivity of the Minute mutation: in weaker Minutes the extent of the AO positive area increases, whereas PO activity disappears. The results are discussed with reference to an impaired protein synthesis in Minutes.  相似文献   

4.
Summary Mutations at the cin gene display drastically lowered levels of the molybdoenzymes, xanthine dehydrogenase (XDH) and aldehyde oxidase (AO), and lack pyridoxal oxidase (PO) and sulfite oxidase (SO) activities. Certain mutations at cin also display varying degrees of female sterility, which is maternally affected. Here we characterize five new cin alleles with respect to the molybdoenzyme activities as well as the molybdenum cofactor, commonly required for molybdoenzyme activity. In complementing cin heterozygotes we find that, in addition to the previously reported unusually high levels of XDH and AO activities, there are unusually elevated levels of SO activity, as well as complementation for PO activity. The levels of immunologically crossreacting material in such heterozygotes indicate that the elevated levels of molybdoenzyme activities cannot be due to increases in the number of enzyme molecules. Measurements of the level of molybdenum cofactor activity normally present in XDH, AO, PO, and SO point to the possibility that a larger fraction of the enzyme molecules are active in these heterozygotes. The possible role of SO with respect to cinnamon's female sterility is also discussed.  相似文献   

5.
The biochemical effects of several newly induced low xanthine dehydrogenase (lxd) mutations in Drosophila melanogaster were investigated. When homozygous, all lxd alleles simultaneously interrupt each of the molybdoenzyme activities to approximately the same levels: xanthine dehydrogenase, 25%; aldehyde oxidase, 12%; pyridoxal oxidase, 0%; and sulfite oxidase, 2% as compared to the wild type. In order to evaluate potentially small complementation or dosage effects, mutant stains were made coisogenic for 3R. These enzymes require a molybdenum cofactor, and lxd cofactor levels are also reduced to less than 10% of the wild type. These low levels of molybdoenzyme activities and cofactor activity are maintained throughout development from late larval to adult stages. The lxd alleles exhibit a dosage-dependent effect on molybdoenzyme activities, indicating that these mutants are leaky for wild-type function. In addition, cofactor activity is dependent upon the number of lxd + genes present. The lxd mutation results in the production of more thermolabile XDH and AO enzyme activities, but this thermolability is not transferred with the cofactor to a reconstituted Neurospora molybdoenzyme. The lxd gene is localized to salivary region 68 A4-9, 0.1 map unit distal to the superoxide dismutase (Sod) gene.  相似文献   

6.
Summary A reliable method for visualizing the Drosophila enzyme pyridoxal oxidase in polyacrylamide gels is described. Antiserum to pyridoxal oxidase has been produced and used in quantitative immunoelectrophoresis to determine the relative amounts of pyridoxal oxidase cross reacting material (CRM) in several mutants including lpo, lxd, ma-l and cin. The lpo variant did not have CRM for PO, thus further supporting the idea that it represents a structural gene for pyridoxal oxidase in Drosophila. CRM for PO was found in ma-l and lxd indicating that their effects upon the enzyme are probably post-translational. No CRM for PO could be found in the cin mutants.This work was supported by PHS grant GM 23736 to V. Finnerty  相似文献   

7.
At least four enzymes contribute to histochemically, electrophoretically, or spectrophotometrically detectable aldehyde oxidase (AO) activity in Drosophila melanogaster. The one we designate AO-1 contributes the majority of activity measured in extracts of whole flies. Pyridoxal oxidase (PO) is also a broad range AO. It is prominent only in midgut and Malpighian tubules, where it apparently accounts for a substantial fraction of total AO activity. The tissue distributions of these enzymes are clearly disparate despite close linkage of their structural loci and parallel dependence on the mal, lxd, and cin loci. A similarly related enzyme, xanthine dehydrogenase (XDH), is detected as an AO only in electrophoretic gels. A fourth broad range AO, not dependent on mal, lxd, and cin, is confined to the ejaculatory bulb. A similar array of AO isozymes is present in phylogenetically distant Drosophila species.This work was supported by NIH Grant 2 RO1 HD 10723.  相似文献   

8.
Summary The aldehyde oxidase staining pattern in wing discs ofDrosophila melanogaster bearing the genotypesap blt /ap blt andap blt andap blt /ap 73n showns changes from the wild-type pattern. Extensive areas of the presumptive dorsal posterior wing blade, which are normally unstained, have enzyme activity in these mutants. In wings of these genotypes, dorsal posterior structures are replaced by dorsal anterior wing structures. A strong correlation has been found between the frequencies of various staining patterns in the discs and the extent of transformation in the cuticular structures of the wing, which is consistent with the idea that aldehyde oxidase activity can be used as an indicator in the wing disc of this transformation. Unlike the homoeotic mutationengrailed, apterous has not been interpreted as a selector gene yet the work reported here shows thatapterous alleles can cause changes resembling those of theengrailed phenotype both in aldehyde oxidase staining behaviour and in the cuticular transformation.  相似文献   

9.
Summary The pattern of aldehyde oxidase (AO) activity was determined in wing discs of Drosophila melanogaster larvae homozygous for the mutants apt 73n, Beaded, and vestigial (vg) in order to determine if reduction in field size in the pouch could be related to alterations of the wild-type AO pattern, as suggested by the Kauffman (1978) hypothesis. The pattern in wild-type discs was resolved into six areas for comparison with mutant discs. vg discs developed at 25° C showed restriction of the pattern into a small area on the anterior side of the disc, and comparison of vg and wild-type prepupal wings allowed positive identification of the AO pattern elements which remained. AO patterns in vg wing discs grown at 27°, 29°, and 31° C were progressively more complete and similar to wild-type, reflecting the reduction in cell death in discs grown at higher temperatures. These results show that cell loss during the third instar in vg development at 25° C is responsible for the alteration of the AO pattern, rather than field size reduction, and that determination of the pattern must take place much earlier than the time of its first appearance during the third larval instar, and before cell death in vg discs begins. Thus mutants acting at earlier stages will be necessary for further tests of the Kauffman hypothesis.  相似文献   

10.
Variants of the enzyme aldehyde oxidase in Drosophila melanogaster are described. In addition to electrophoretic variants, a mutant that causes low levels of the enzyme has been found by screening more than 80 strains for aldehyde oxidase levels. The locus of the mutation maps on the third chromosome near lpo and aldox. The existence of the ry, lpo, and aldox mutants and of the new mutant indicates that xanthine dehydrogenase, pyridoxal oxidase, and aldehyde oxidase are under a separate genetic control, in addition to a common genetic control by ma-l and lxd. The genetic separation is shown to be accompanied by physical separation of the enzymes with DEAE-cellulose column chromatography and (NH 4)2SO4fractionation. Further data on the metabolism of aldehydes by xanthine dehydrogenase and aldehyde oxidase are presented. Although xanthine dehydrogenase requires NAD or a similar cofactor to metabolize purine and pteridine substrates, aldehyde oxidase oxidizes salicylaldehyde to salicylic acid without dissociable cofactors and with the uptake of oxygen.This work was supported in part by Research Grant GM-08202, by a Predoctoral Fellowship (J.C.) and a Genetics Training Grant (J.C. and E.D.), and by a Research Career Development Award (E.G.), all from the National Institutes of Health. Part of this work was submitted by J.C. to the University of North Carolina at Chapel Hill in partial fulfillment of the degree of Doctor of Philosophy.  相似文献   

11.
Gross aldehyde oxidase activity from the egg-stage through 10-day-old adults and distribution of the enzyme in eye-antennal imaginal discs in third instar larvae were determined for the tumorous-head strain of Drosophila melanogaster. Aldehyde oxidase activity of several laboratory strains was measured for comparative purposes. Aldehyde oxidase activity was 100% higher during embryogenesis in tuh(ASU) eggs than in Oregon-R-C eggs. A second period of elevated aldehyde oxidase activity was observed during metamorphosis where tuh(ASU) pupae averaged 65% more enzyme activity than Oregon-R-C. Therefore, during determination and differentiation of the eye-antennal imaginal disc, the tuh(ASU) strain possesses a high aldehyde oxidase activity. Wild-type Drosophila melanogaster antennal imaginal discs are aldehyde oxidase positive, whereas attached eye imaginal discs are apparently aldehyde oxidase negative. A sample of eye-antennal imaginal discs from tuh(ASU) third instar larvae revealed that either one or both eye discs of 64% of the larvae were aldehyde oxidase positive. Aldehyde oxidase activity may be correlated with the homoeotic transformation in parts of the eye disc.  相似文献   

12.
Rocket immunoelectrophoresis was used to estimate aldehyde oxidase cross-reacting material (AO-CRM) in larval hemolymph and adult fly extracts in mutants with reduced AO enzymatic activity. Hemolymph of larvae homozygous for Aldox n, which is a mutation of the presumed structural gene for AO, contains 30% of the wild-type CRM. The demonstration of AO-CRM in Aldox n larval hemolymph is surprising since this genotype has been reported to lack CRM. By contrast, adult Aldox n flies lack detectable CRM. The other AO-deficient mutants that were examined are cin, mal, and lxd; each has appreciable levels of CRM in both larval hemolymph and adult extracts. Detection of CRM in these mutants helps to clarify conflicting reports in the literature.This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to L.W.B.  相似文献   

13.
Summary A number of parameters characteristic of the wing margin precursor in imaginal discs of Drosophila are known: the zone of non-proliferating cells or ZNC (O'Brochta and Bryant 1985), aldehyde oxidase (AO) and other enzyme staining patterns (Sprey et al. 1982), E1C antigen localization in a narrow band along the margin (Piovant and Lena 1988). To test our hypothesis that such parameters, and others, act in concert to determine margin identity and the positional information that specifies the bristles and hairs appropriate to the anterior, posterior and distal margins, we have examined these parameters in the dominant mutant Lyra, in which much of the anterior and posterior margins is missing. After establishing that Lyra phenotype is already evident in the early pupal wing, we tested the known imaginal disc parameters and found that only Mab E1C (Piovant and Lena 1988) distribution differs from wild type, suggesting that E1C antigen may be a component of positional information. Sibatani's (1983) model for specification of positional information (PI) applied to wing discs predicts the Lyra adult wing shape as well as the reduced distribution of E1C antigen in Lyra wing discs. The model is based on the assumption that specification of positional information depends on interactions of multiple, independent factors. Clonal analysis with shaggy (Simpson et al. 1988 and Ripoll et al. 1988) indicates that factors in addition to E1C antigen contribute to margin PI in Lyra wings and should allow us to test the multi-component hypothesis further.  相似文献   

14.
Summary Histochemical staining for aldehyde oxidase in mature tumorous-head eye imaginal discs of Drosophila melanogaster reveals region-specific enzyme activity that normally is not found in wild type eye discs. Confined primarily to the central portion of the mutant disc is a morphologically distinct area that can be predicted to be the only aldehyde oxidase (aldox) positive tissue in the eye disc. Prior to staining, this area can be removed mechanically from the surrounding tissue and is characterized by smooth boundaries. The separated tissue stains for aldehyde oxidase whereas the remaining disc is aldox negative as in the wild type. We presume that the aldehyde oxidase positive region subsists in the primordium of the tumorous-head abnormality and propose that the appearance of this enzyme signals a change in the state of determination in the mutant disc.  相似文献   

15.
Summary Distribution of the enzyme aldehyde oxidase in transformed haltere discs from the homoeotic bithorax series of mutants was investigated by histochemical means. The bithorax (bx) mutant, which transforms the anterior part of the haltere into an alterior with blade, possesses in the haltere disc an aldehyde oxidase staining pattern similar to that of the anterior side of the wing disc. The postbithorax (pbx) mutant, which transforms the posterior haltere into a structure resembling the posterior wing blade, reveals an aldehyde oxidase staining pattern in the haltere disc characteristic of the posterior side of the wing disc pouch. When both (bx 3 (pbx) mutants are present the haltere develops into a metathoracic wing. It is shown here that the transformed haltere disc closely resembles the previously established pattern in the wing disc with respect to aldehyde oxidase distribution. Change in the pattern of aldehyde oxidase in bithorax mutants signals alteration in gene expression which at least for this particular enzyme correlates well with the morphological transformation from haltere to wing. A possible correlation between pattern of enzyme activity and developmental compartmentalization has been discussed.  相似文献   

16.
Summary Transformed areas derived from mature imaginal eye discs of the tumorous-head (tuh) mutant of Drosophila melanogaster were transplanted either into larval hosts (metamorphosis test) or into adult females (long-term in vivo culture). These disc fragments showed characteristic morphologic and enzymatic (aldehyde oxidase (aldox) positive) differences in comparison to a similar region in wildtype eye discs.The tissues derived from the central portion of the tuh eye disc which would normally give rise to eye facets transformed predominantly into homoeotic structures of the abdominal region of the fly. Posterior abdominal tergites arose in 88% of the transplants, of which 7% also possessed genital tissue. In addition, 10% showed duplicated vibrissae with no accompanying homoeotic alteration and 2% differentiated into unidentifiable structures.Our preliminary results from long-term cultures have shown the capacity of the tuh transformed area to grow in vivo and to maintain its differentiation potential. This kind of approach therefore provides an opportunity to follow transdetermination properties of a homoeotically altered tissue.In the present study we demonstrate that during larval life, the presumptive region of the tuh transformed area can be removed from the surrounding unaffected eye disc tissue. From the autonomous differentiation of the tuh phenotype we conclude that the homoeotic change is cell-intrinsically expressed and that the aldox positive areas in the tuh eye discs signal an altered state of determination. Leave of absence: Department of Biological Sciences, Florida Technological University, Orlando, Florida 32816, USA  相似文献   

17.
Mutation at thealdox-2 locus inDrosophila melanogaster affects the specific activities of four molybdoenzymes differentially during development. Sulfite oxidase activity is normal during late larval and pupal stages but is reduced during early adult stages inaldox-2 organisms. There was complete concordance among the effects ofaldox-2 on sulfite oxidase, aldehyde oxidase, xanthine dehydrogenase, and pyridoxal oxidase, when 38 stocks were analyzed which were derived from single recombination events betweenc andpx, markers which flankaldox-2. Several different biochemical analyses indicate that the active molybdoenzymes present in thealdox-2 strain are normal with respect to size, shape,pH-activity profile,K m , and molecular weight. Significant differences were found between thealdox-2 strain and the OR control strain in their responses to dietary Na2MoO4 and Na2WO4. The mutant strain is much more resistant to the effects of dietary Na2WO4 and much more responsive to the administration of Na2MoO4 than the OR control strain when these effects are quantitated by measurements of molybdoenzyme specific activities. This evidence suggests that thealdox-2 + gene product has a molybdenum binding site which can also bind tungsten and that this site is altered in the mutant strain. The hypothesis presented explains the observed effects of thealdox-2 mutation and relates them to the other mutations reported in this gene-enzyme system.This work was supported by an Operating Grant from the Natural Sciences and Engineering Research Council to M.M.B.  相似文献   

18.
Alcohol dehydrogenase is necessary for ethanol detoxification and metabolic utilization. It has been generally assumed that aldehyde oxidase (AO) produced by the Aldox locus (3–56.7) is necessary for a further transformation of acetaldehyde into acetate. We find that various mutant strains (ma-l or Aldox n) which do not produce an active enzyme show about the same tolerance to alcohol as do wild strains. This physiological paradox is probably to be explained by the discovery of another locus (not localized) which produced a small amount of AO in all tested strains. The adaptive significance of the genetically polymorphic Aldox locus is probably to be looked for in physiological pathways other than ethanol metabolism.  相似文献   

19.
Klebes A  Biehs B  Cifuentes F  Kornberg TB 《Genome biology》2002,3(8):research0038.1-research003816

Background  

In the Drosophila larva, imaginal discs are programmed to produce adult structures at metamorphosis. Although their fate is precisely determined, these organs remain largely undifferentiated in the larva. To identify genes that establish and express the different states of determination in discs and larval tissues, we used DNA microarrays to analyze mRNAs isolated from single imaginal discs.  相似文献   

20.
Four different genes are known to affect aldehyde oxidase activity (AO) in Drosophila melanogaster. Mutants at each of these loci eliminate AO activity and simultaneously eliminate detectable AO-crossing reacting material (AO-CRM) even though only one is the structural gene for AO (Aldoxn). The other three genes (cin1, lxd and mal) coordinately "control" the levels of activity of AO and two related enzymes, xanthine dehydrogenase (XDH) and pyridoxal oxidase (PO). Contrary to their effects on AO-CRM, neither of these three mutants eliminate XDH-CRM. A model of interaction of these enzymes and genes controlling their activities is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号