首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of epidermal growth factor (EGF), thyroid-stimulating hormone (TSH) and amiloride on cytoplasmic pH (pHi) in cultured porcine thyroid cells. We used 2',7'-bis(2-carboxyethyl)-5- (and 6-)carboxyfluorescein (BCECF), an internalized fluorescent pH indicator, to measure pHi. EGF stimulated thyroid cell alkalinization and proliferation, which were blocked by amiloride. EGF-stimulated thyroid cell alkalinization depended on extracellular Na+ concentrations. EGF stimulation resulted in an activation of Na+/H+ exchange, which alkalinized the cells. The results indicated that Na+/H+ exchange or cell alkalinization might function as a transmembrane signal transducer in the action of EGF. In the present system, TSH did not stimulate alkalinization or proliferation.  相似文献   

2.
This is the first report to show that epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulate the production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in the thyroid gland. In cultured porcine thyroid cells, EGF and TPA stimulate PGE2 and 6-keto PGF1 alpha production; the maximum PG levels were obtained after 3-4 h incubation with EGF or TPA; the addition of as little as 10(-11) M EGF or 5 X 10(-11) M TPA resulted in increases in PGE2 and 6-keto PGF1 alpha, and the maximum levels were obtained with 10(-8)-10(-7) M EGF or TPA. This report also shows that EGF and TPA stimulate [3H] thymidine incorporation.  相似文献   

3.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

4.
To determine the role of calcium in the action of insulin-like growth factor II (IGF-II), we have examined the effect of multiplication stimulating activity, the rat IGF-II, on cytoplasmic-free calcium concentration, [Ca2+]c, in aequorin-loaded Balb/c 3T3 cells. IGF-II does not cause any change in [Ca2+]c in quiescent cells. By contrast, IGF-II induces changes in [Ca2+]c in platelet-derived growth factor(PDGF) - pretreated competent cells: when competent cells are incubated with epidermal growth factor (EGF) for 10 min, subsequent IGF-II induces an immediate increase in [Ca2+]c. Without EGF treatment, IGF-II does not cause any increase in [Ca2+]c. The priming action of EGF is time dependent, requiring approximately 10 min for the maximum effect. The IGF-II-mediated increase in [Ca2+]c is totally dependent on extracellular calcium and is blocked by lanthanum. When DNA synthesis in PDGF-treated competent cells is assessed by measuring [3H]thymidine incorporation, IGF-II by itself has only a small effect. Likewise, a brief treatment with EGF results in only a small increase in [3H]thymidine incorporation. By contrast, in competent cells briefly treated with EGF, IGF-II causes a marked stimulation of [3H]thymidine incorporation. These results indicate that IGF-II increases [Ca2+]c in competent Balb/c 3T3 cells treated with EGF by stimulating calcium influx and that IGF-II-stimulated calcium influx may be related causally to its action on cell proliferation.  相似文献   

5.
Effect of angiotensin II (ANG II) on mouse embryonic stem (ES) cell proliferation was examined. ANG II increased [(3)H] thymidine incorporation in a time- (>4 h) and dose- (>10(-9) M) dependent manner. The ANG II-induced increase in [(3)H] thymidine incorporation was blocked by inhibition of ANG II type 1 (AT(1)) receptor but not by ANG II type 2 (AT(2)) receptor, and AT(1) receptor was expressed. ANG II increased inositol phosphates formation and [Ca(2+)](i), and translocated PKC alpha, delta, and zeta to the membrane fraction. Consequently, the inhibition of PLC/PKC suppressed ANG II-induced increase in [(3)H] thymidine incorporation. The inhibition of EGF receptor kinase or tyrosine kinase prevented ANG II-induced increase in [(3)H] thymidine incorporation. ANG II phosphorylated EGF receptor and increased Akt, mTOR, and p70S6K1 phosphorylation blocked by AG 1478 (EGF receptor kinase blocker). ANG II-induced increase in [(3)H] thymidine incorporation was blocked by the inhibition of p44/42 MAPKs but not by p38 MAPK inhibition. Indeed, ANG II phosphorylated p44/42 MAPKs, which was prevented by the inhibition of the PKC and AT(1) receptor. ANG II increased c-fos, c-jun, and c-myc levels. ANG II also increased the protein levels of cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 but decreased the p21(cip1/waf1) and p27(kip1), CDK inhibitory proteins. These proteins were blocked by the inhibition of AT(1) receptor, PLC/PKC, p44/42 MAPKs, EGF receptor, or tyrosine kinase. In conclusion, ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC and EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse ES cells.  相似文献   

6.
Normal guinea-pig endometrial cells, grown in primary culture, were made quiescent by serum depletion. Quiescent cells cultured in the control medium (containing 1% fetal calf serum treated with dextran-coated charcoal, DCC-FCS) showed a steady and weak rate of [3H]thymidine incorporation, but the addition of 15% fetal calf serum (FCS) or 10% DCC-FCS to the control medium induced a significant increase of DNA synthesis, demonstrating the responsiveness of the quiescent cells to stimulation. A lower but significant increase in [3H]thymidine incorporation was elicited by epidermal growth factor (EGF, 100 ng/ml) or insulin (10 micrograms/ml) added to the basal medium. Oestradiol-17 beta added to the control medium at concentrations ranging from 10(-10) to 10(-5) mol/l not only failed to increase but even inhibited [3H]thymidine incorporation at the highest concentrations tested. An additive effect was noticed when quiescent cells were incubated with oestradiol-17 beta (10(-9) mol/l) in the presence of 10% DCC-FCS, but no synergistic effect occurred when 2 x 10(-9) mol oestradiol-17 beta/l was combined with either EGF (100 ng/ml) or insulin (10 micrograms/ml). Oestradiol-17 beta appears unable alone to stimulate DNA synthesis in normal endometrial cells, but requires factor(s) present in fetal calf serum.  相似文献   

7.
The present study was performed to investigate the regulation of cytosolic pH (pHi) and DNA synthesis by parathyroid hormone(PTH) and PTH-related peptide (PTHrP) in osteoblasts, using osteoblastic osteosarcoma cells, UMR-106 which possessed PTH-responsive dual signal transduction systems (cAMP-dependent protein kinase (PKA) and calcium/protein kinase C [Ca/PKC]) and amiloride-inhibitable Na+/H+ exchange system. Both human (h)PTH-(1-34) and hPTHrP-(1-34) caused a progressive decrease in pHi and the inhibition of [3H]thymidine incorporation (TdR) to the same degree in a dose-dependent manner with a minimal effective dose of 10(-10) M. Dibutyryl cAMP (10(-4) M and Sp-cAMPS (10(-4) M), a direct stimulator of PKA also caused a progressive decrease in pHi, and calcium ionophores (A23187 and ionomycin, 10(-6) M) caused a transient decrease in pHi. Pretreatment with amiloride (0.3 mM) mostly blocked dbcAMP- and Sp-cAMPS-induced decrease in pHi but did not affect calcium ionophore-induced decrease in pHi. In the presence of amiloride, PTH and PTHrP caused a transient decrease in pHi, which was similar to the pattern of calcium ionophore-induced change in pHi. Amiloride did not affect the inhibition of TdR by PTH or PTHrP as well as that by cAMP analogues or calcium ionophores. The present study indicated that PTH and PTHrP caused cytosolic acidification through PKA-inhibited Na+/H+ exchange and increased cytosolic calcium-induced pathway and that the regulation of DNA synthesis by PTH and PTHrP was not via Na+/H+ exchange system.  相似文献   

8.
The mechanisms that generate the intercellular heterogeneity of functional and proliferation responses in a tissue are generally unknown. In the thyroid gland, this heterogeneity is peculiarly marked and it has been proposed that it could result from the coexistence of genetically different subpopulations of thyrocytes. To evaluate the heterogeneity of proliferative responses in primary culture of dog thyrocytes, we asked whether the progeny of cells having incorporated 3H thymidine in a first period of the culture could have a distinct proliferative fate during a second labeling period (incorporation of bromodeoxyuridine revealed by immunofluorescence staining combined with autoradiography of 3H thymidine). No growth-prone subpopulations were detected and the great majority of cells were found to response to either EGF or thyrotropin (TSH) through cAMP. However, only a fraction of cells replicated DNA at one given period and a clustered distribution of labeled cells within the monolayer, which was different for thymidine- or bromodeoxyuridine-labeled cells, indicates some local and temporal synchrony of neighboring cells. The TSH/cAMP-dependent division of thyrocytes preserved their responsiveness to both TSH and EGF mitogenic pathways. By contrast, cells that had divided during a momentary treatment with EGF lost the mitogenic sensitivity to TSH and cAMP (forskolin) but retained the sensitivity to EGF. Since cells that had not divided kept responsiveness to both TSH and EGF, this generated two subpopulations differing in mitogen responsiveness. The extinction of the TSH/cAMP-dependent mitogenic pathway was delayed (1-2 d) but stable. Cell fusion experiments suggest it was due to the induction of a diffusible intracellular inhibitor of the cAMP-dependent growth pathway. These findings provide a useful model of the generation of a qualitative heterogeneity in the cell sensitivity to various mitogens, which presents analogies with other epigenetic processes, such as differentiation and senescence. They shed a new light on the significance of the coexistence of different modes of cell cycle controls in thyroid epithelial cells.  相似文献   

9.
Excitatory amino acids stimulated inositol phospholipid hydrolysis in primary cultures of astrocytes, as reflected by an increased formation of [3H]inositol monophosphate [( 3H]InsP) in the presence of 10 mM Li+. Quisqualate was the most potent activator of inositol phospholipid hydrolysis, followed by glutamate and ibotenate. Kainate exhibited low activity, whereas N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) were inactive. The increase in [3H]InsP formation induced by glutamate was potentiated after 12-h exposure to the proliferative agent epidermal growth factor (EGF), suggesting that activation of the mitotic cycle leads to an enhanced coupling of glutamate recognition sites with phospholipase C. To study how glutamate receptors are involved in regulating cell proliferation, we have measured [methyl-3H]thymidine incorporation in cultured astrocytes. Excitatory amino acids reduced thymidine incorporation with a pharmacological profile similar to that observed for the stimulation of inositol phospholipid hydrolysis. Quisqualate acted as a potent antiproliferative agent, both under basal conditions and in cells stimulated to proliferate by addition of EGF or phorbol 12-tetradecanoate 13-acetate. Glutamate and ibotenate reduced [methyl-3H]thymidine incorporation at high concentrations, whereas kainate, AMPA, and NMDA were virtually inactive. The action of quisqualate on both inositol phospholipid hydrolysis and thymidine incorporation was attenuated by 2-amino-4-phosphonobutyrate, which acted as a weak agonist/competitive antagonist. Other excitatory amino acid receptor antagonists were not effective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of thimerosal on intracellular calcium ([Ca2+]i), pH (pHi) and fructose 2,6-bisphosphate (Fru 2,6-P2) in thymus lymphocytes was investigated. The effect of thimerosal on cell growth was also examined. Thimerosal produced a dose-dependent increase in [Ca2+]i, pHi and in the level of fructose 2,6-bisphosphate. Thimerosal was, however, unable to produce cell proliferation and inhibited [3H]thymidine incorporation when cells were challenged with PHA and costimulator. In the absence of external calcium, thimerosal produced only a slight increase in [Ca2+]i. In Na(+)-containing buffer, thimerosal induced an initial acidification (0.05 +/- 0.01 pH units), followed by an alkalinization of 0.08 pH units/min, whereas in Na(+)-free media, pHi decreased 0.2 +/- 0.02 units and this acidification was maintained for more than 40 min. When external calcium was removed the initial acidification was unchanged and no further increase in pHi was observed. Polymyxin B, an inhibitor of protein kinase C, did not modify the initial thimerosal-induced acidification although pH returned to basal levels after 10 min. It was concluded that alkalinization induced by thimerosal is probably due to activation of the Na+/H+ exchanger and that changes in internal Ca2+, pH and metabolic rate are not sufficient to induce cellular proliferation. The mechanism by which thimerosal inhibits thymocyte proliferation remains to be clarified.  相似文献   

11.
When normal human foreskin keratinocytes were cultured in the absence of polypeptide growth factors at densities above 5 x 10(3)/cells cm2, the cells proliferated continuously and the addition of IGF-I, EGF, TGF alpha, bFGF, or aFGF did not significantly alter growth rate. Heparin sulfate, TGF beta, or suramin inhibited keratinocyte growth factor-independent proliferation. The addition of EGF, TGF alpha, or aFGF reversed heparin-induced growth inhibition, while bFGF partially negated this effect. RIA of keratinocyte-derived conditioned medium (CM) indicated the presence of TGF alpha peptide at a concentration of approximately 235 pg/ml. In contrast, clonal growth of keratinocytes required the addition of growth factors to the basal medium. Keratinocyte-derived CM replaced EGF in stimulating keratinocyte clonal growth, and an anti-EGF receptor mAb inhibited CM-induced keratinocyte clonal growth. In addition to its effect on keratinocytes, keratinocyte-derived CM stimulated the incorporation of [3H]thymidine by quiescent cultures of human foreskin fibroblasts, mouse AKR-2B cells, and EGF-receptorless mouse NR6 cells. CM-stimulated [3H]thymidine incorporation into quiescent normal human fibroblasts was partially reduced in the presence of anti-EGF receptor mAb. Heparin sulfate partially inhibited CM-induced keratinocyte clonal growth and [3H]thymidine incorporation into quiescent AKR-2B cells. We hypothesize from these data that autocrine and paracrine-acting factors produced by keratinocytes mediated their effect through the activation of both EGF receptor-dependent and EGF receptor-independent mitogenic pathways and that some of these factors appear to be sensitive to inhibition by heparin.  相似文献   

12.
Two residues have been shown to be critical for the kinase activity of the receptor for epidermal growth factor (EGF): lysine-721, which functions in the binding of ATP by correctly positioning the γ-phosphate for phosphoryl transfer, and aspartate-813, which functions as the catalytic base of the kinase. Mutation of either of these two residues has been shown to disrupt kinase activity of the receptor. However, studies performed in different laboratories had suggested that while EGF receptors mutated at lysine-721 are unable to stimulate significant increases of [3H]thymidine incorporation into DNA in response to EGF treatment, cells expressing EGF receptors mutated at aspartate-813 do stimulate significant incorporation of [3H]thymidine into DNA in response to EGF. In the present study, EGF receptors mutated at lysine-721 or aspartate-813 (K721R and D813A, respectively), as well as wild-type EGF receptors, were expressed in the same cellular background, Chinese hamster ovary cells, and side-by-side experiments were performed to investigate possible signaling-related differences. Our results indicate that while there are measurable differences in the abilities of the two mutant receptors to stimulate [3H]thymidine incorporation between 20 and 24 h after addition of EGF, these differences cannot be correlated with significant differences in EGF-stimulated tyrosine phosphorylation of mutant EGF receptor and endogenous ErbB2, the extent of receptor internalization, EGF-stimulated ion uptake, stimulation of SHC activity, or receptor association with Grb2. Flow cytometric data suggest that populations of cells expressing either kinase-impaired mutant EGF receptor progress similarly into S phase in response to addition of EGF. These observations suggest that D813A and K721R retain similar ability to stimulate mitogenic signaling events through transactivation of ErbB2 with only subtle temporal differences, and they emphasize the importance of expressing mutant receptors in an identical cellular context to make valid comparisons of functions.  相似文献   

13.
Insulin-like growth factor I (IGF-I) increased cytoplamic pH (pHi) and cytoplasmic Ca2+ [( Ca2+]i) in cultured porcine thyroid cells. Inhibition of the Na+/H(+)-antiporter by dimethylamiloride or a reduction of external Na(+)-concentrations attenuates the increases in pHi and [Ca2+]i. The [Ca2+]i response to IGF-I is a pHi-dependent process. IGF-I activates Na+/H(+)-antiporter and alkalinizes thyroid cells. The resulting increase in pHi facilitates the [Ca2+]i response by adjusting the pHi closer to the pHi-optimum of the intracellular Ca(2+)-mobilizing system. One of the biological functions of IGF-I-induced activation of the Na+/H(+)-antiporter is to shift the pHi to an optimal value for the [Ca2+]i response.  相似文献   

14.
Chinese hamster embryo fibroblast cells (CHEF/18) possess a plasma membrane-associated, amiloride-sensitive Na+/H+ antiporter that affects intracellular pH (pHi) and is activated by growth factor addition. Our results using 14C-benzoic acid distribution indicate that both epidermal growth factor (EGF) and thrombin are capable of causing rapid rises in the pHi of CHEF/18 cells. The maximal shift induced by these factors is 0.20 to 0.25 pH units above the basal unstimulated level. Distinctive differences were observed between the modes of action of these two growth factors. Sequential additions revealed that the rise in pHi due to EGF was additive with that caused by diacylglycerols (DAG), while that of thrombin was not. Furthermore, exposure of cells to the phorbol ester PMA for a prolonged period of time in order to down-regulate protein kinase C (pkC), or treatment with the pkC inhibitor H-7, abolished the pHi response to thrombin but not to EGF. In contrast, incubation of cells in nominally calcium-free medium or with the calmodulin antagonists W-7 or trifluoperazine (TFP) decreased only the ability of EGF to cause changes in pHi. These data suggest that there are two distinct mechanisms for activation of the Na+/H+ antiporter in CHEF/18 fibroblast cells and thus provide an example of the use of alternative modes for the modulation of intracellular processes.  相似文献   

15.
Two established human tumor cell lines, epidermoid carcinoma line A431 and glioblastoma line SF268, were studied to compare the interaction of each with epidermal growth factor (EGF). SF268 cells bound [125I] EGF with 35-40 fold higher affinity than did the A431 cells. The EGF binding sites of both lines were photoaffinity labeled using 2,4-NAPS-[125I] EGF, a photoreactive derivative of EGF. Extracts of photolysed cells analyzed by SDS-PAGE showed a difference between the two cell lines in the high molecular weight component corresponding to the EGF receptor. EGF in a dose range from 0.3-200 nM had no effect on thymidine incorporation by SF268 cells, whereas thymidine incorporation by A431 cells was markedly inhibited by EGF.  相似文献   

16.
Retinoic acid (RA) is important for maintaining integrity of alveolar epithelial cells, but the mechanism has not been defined. We cultured type II pneumocytes at confluent, high cell density (104 cells/mm2) and found that RA (10−6 M) inhibited thymidine incorporation to 60% of control, despite a dose-dependent increase in epidermal growth factor receptor (EGFR) levels. However, at lower, subconfluent density (102 cells/mm2), RA stimulated thymidine incorporation to 280% of control. EGF increased thymidine incorporation at concentrations as low as 0.1 ng/mL, but no further increase was observed at higher concentrations up to 100 ng/mL. In subconfluent cells co-treated with EGF (100 ng/mL) and increasing concentrations of RA (10−8 M–10−5 M RA), thymidine incorporation was significantly greater at all concentrations than RA alone, with greatest increases observed at 10−7 (422% of control) and 10−6 (470% of control) M RA. In summary, the effects of RA on thymidine incorporation are sensitive to changes in cell density. RA inhibits thymidine incorporation at high cell density and stimulates thymidine incorporation at low density. RA increases EGFRs in cultured type II pneumocytes, and EGF stimulates thymidine incorporation independent of the cultured cell density. These data may help to explain how RA mediates lung repair in vivo.  相似文献   

17.
The effects of several extracellular matrix components (EMCs)--fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen--on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [3H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [3H]thymidine uptake exhibited in the cells cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density.  相似文献   

18.
Receptors for insulin and epidermal growth factor (EGF) have been studied in confluent cultured intact human fibroblast monolayers. 125-I-EGF binds specifically to fibroblast monolayers. Half-maximal binding is observed at 4 times 10 minus 10 M EGF; at saturation of binding approximately 4 times 10-4 molecules of EGF are bound per cell. 125-I-Insulin is also bound specifically by intact monolayers with half-maximal binding observed at 10 minus 9 M insulin; about 4 times 10-3 molecules of insulin are bound per cell at saturation. Both insulin and EGF stimulate thymidine incorporation and alpha-aminoisobutyrate uptake. A half-maximal effect for insulin is observed at about 10 minus 9 M, both for the stimulation of thymidine incorporation and for the stimulation of alpha-aminoisobutyrate uptake; for EGF, half-maximal stimulation of both thymidine incorporation and alpha-aminoisobutyrate uptake is observed at 10 minus 10 M EGF. EGF causes an apparent greater stimulation of thymidine incorporation than does insulin, whereas the stimulation of alpha-aminoisobutyrate uptake is the same for both insulin and EGF. The degree of stimulation of alpha-aminoisobutyrate uptake by either insulin or EGF varied (1.2- to 2-fold) from one batch of cells to another, as did the measured values of the apparent K-m (average value 1 mM, range 0.6 to 2 mM) and V-max (average, 0.82, range 0.78 to 0.87 nmol/100 mug of protein per min) for alpha-aminoisobutyrate. Nonetheless, the apparent K-m of each peptide for stimulation of alpha-aminoisobutyrate uptake was independent of the degree of increase in alpha-aminoisobutyrate uptake, and was constant from one batch of cells to another. The peptide-mediated stimulation of alpha-aminoisobutyrate uptake can be attributed to a decrease in the apparent K-m for alpha-aminoisobutyrate (e.g. for insulin) from 0.70 to 0.57 mM; for EGF from 0.87 to 0.66 mM) and a concomitant increase in the apparent V-max for alpha-aminoisobutyrate (e.g. for insulin from 0.78 to 0.87 and for EGF from 0.80 to 0.84 nmol/min/100 mug of cell protein). The stimulation requires a 40- to 60-min period of preincubation with either peptide and is blocked by pretreating cells with cycloheximide. In the presence of ouabain, both peptides inhibit rather than stimulate alpha-aminoisobutyrate uptake; ouabain lowers the basal rate of alpha-aminoisobutyrate uptake. The uptake of 3-0-methyl-D-glucose is not affected by either EGF or insulin under conditions where insulin stimulates fat cell transport. These observations indicate that cultured human fibroblasts possess specific binding sites for insulin and EGF, which sites can be related to two actions of the peptides: stimulation of thymidine incorporation and alpha-aminoisobutyrate uptake.  相似文献   

19.
20.
Park JH  Lee MY  Heo JS  Han HJ 《Cell proliferation》2008,41(5):786-802
Abstract. Objectives: The gap junction protein, connexin (Cx), plays an important role in maintaining cellular homeostasis and cell proliferation by allowing communication between adjacent cells. Therefore, this study has examined the effect of epidermal growth factor (EGF) on Cx43 and its relationship to proliferation of mouse embryonic stem cells. Materials and methods: Expressions of Cx43, mitogen‐activated protein kinases (MAPKs) and cell cycle regulatory proteins were assessed by Western blot analysis. Cell proliferation was assayed with [3H]thymidine incorporation. Intercellular communication level was measured by a scrape loading/dye transfer method. Results: The results showed that EGF increased the level of Cx43 phosphorylation in a time‐ (≥5 min) and dose‐ (≥10 ng/mL) dependent manner. Indeed, EGF‐induced increase in phospho‐Cx43 level was significantly blocked by either AG 1478 or herbimycin A (tyrosine kinase inhibitors). EGF increased Ca2+ influx and protein kinase C (PKC) translocation from the cytosolic compartment to the membrane compartment. Moreover, pre‐treatment with BAPTA‐AM (an intracellular Ca2+ chelator), EGTA (an extracellular Ca2+ chelator), bisindolylmaleimide I or staurosporine (PKC inhibitors) inhibited the EGF‐induced phosphorylation of Cx43. EGF induced phosphorylation of p38 and p44/42 MAPKs, and this was blocked by SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a p44/42 MAPK inhibitor), respectively. EGF or 18α‐glycyrrhetinic acid (GA; a gap junction inhibitor) increased expression levels of the protooncogenes (c‐fos, c‐jun and c‐myc), cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin‐dependent kinase 2 (CDK2), CDK4 and p‐Rb], [3H]thymidine incorporation and cell number, but decreased expression levels of the p21WAF1/Cip1 and p27Kip1, CDK inhibitory proteins. Transfection of Cx43 siRNA also increased the level of [3H]thymidine incorporation and cell number. EGF, 18α‐GA or transfection of Cx43 siRNA increased 2‐DG uptake and GLUT‐1 protein expression. Conclusions: EGF‐induced phosphorylation of Cx43, which was mediated by the Ca2+/PKC, p44/42 and p38 MAPKs pathways, partially contributed to regulation of mouse embryonic stem cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号