共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Bartosz Górnikiewicz Anna Ronowicz Justyna Podolak Piotr Madanecki Anna Stanis?awska-Sachadyn Pawe? Sachadyn 《DNA research》2013,20(6):605-621
Epigenetic regulation plays essential role in cell differentiation and dedifferentiation, which are the intrinsic processes involved in regeneration. To investigate the epigenetic basis of regeneration capacity, we choose DNA methylation as one of the most important epigenetic mechanisms and the MRL/MpJ mouse as a model of mammalian regeneration known to exhibit enhanced regeneration response in different organs. We report the comparative analysis of genomic DNA methylation profiles of the MRL/MpJ and the control C57BL/6J mouse. Methylated DNA immunoprecipitation followed by microarray analysis using the Nimblegen ‘3 × 720 K CpG Island Plus RefSeq Promoter’ platform was applied in order to carry out genome-wide DNA methylation profiling covering 20 404 promoter regions. We identified hundreds of hypo- and hypermethylated genes and CpG islands in the heart, liver, and spleen, and 37 of them in the three tissues. Decreased inter-tissue diversification and the shift of DNA methylation balance upstream the genes distinguish the genomic methylation patterns of the MRL/MpJ mouse from the C57BL/6J. Homeobox genes and a number of other genes involved in embryonic morphogenesis are significantly overrepresented among the genes hypomethylated in the MRL/MpJ mouse. These findings indicate that epigenetic patterning might be a likely molecular basis of regeneration capability in the MRL/MpJ mouse. 相似文献
4.
5.
Anja Schmidt Heike J. P. Wöhrmann Michael T. Raissig Julia Arand Jacqueline Gheyselinck Valeria Gagliardini Christian Heichinger Joern Walter Ueli Grossniklaus 《The Plant journal : for cell and molecular biology》2013,73(5):776-787
In flowering plants, double fertilization of the female gametes, the egg and the central cell, initiates seed development to give rise to a diploid embryo and the triploid endosperm. In the absence of fertilization, the FERTILIZATION‐INDEPENDENT SEED Polycomb Repressive Complex 2 (FIS‐PRC2) represses this developmental process by histone methylation of certain target genes. The FERTILIZATION‐INDEPENDENT SEED (FIS) class genes MEDEA (MEA) and FERTILIZATION‐INDEPENDENT ENDOSPERM (FIE) encode two of the core components of this complex. In addition, DNA methylation establishes and maintains the repression of gene activity, for instance via DNA METHYLTRANSFERASE1 (MET1), which maintains methylation of symmetric CpG residues. Here, we demonstrate that Arabidopsis MET1 interacts with MEA in vitro and in a yeast two‐hybrid assay, similar to the previously identified interaction of the mammalian homologues DNMT1 and EZH2. MET1 and MEA share overlapping expression patterns in reproductive tissues before and after fertilization, a prerequisite for an interaction in vivo. Importantly, a much higher percentage of central cells initiate endosperm development in the absence of fertilization in mea‐1/MEA; met1‐3/MET1 as compared to mea‐1/MEA mutant plants. In addition, DNA methylation at the PHERES1 and MEA loci, imprinted target genes of the FIS‐PRC2, was affected in the mea‐1 mutant compared with wild‐type embryos. In conclusion, our data suggest a mechanistic link between two major epigenetic pathways involved in histone and DNA methylation in plants by physical interaction of MET1 with the FIS‐PRC2 core component MEA. This concerted action is relevant for the repression of seed development in the absence of fertilization. 相似文献
6.
DNA甲基化是主要发生在CpG双核苷酸序列中胞嘧啶上的一种表面遗传修饰.它以S-腺苷甲硫氨酸为甲基供体,在DNA甲基酶的催化下,将甲基转移到胞嘧啶上,生成5-甲基胞嘧啶.DNA甲基化在植物的很多生命过程中具有重要的作用.本文就其作用机制、主要研究应用以及未来的前景进行综述,从而为DNA甲基化在植物遗传学中的研究提供理论参考. 相似文献
7.
8.
9.
10.
11.
I. F. Golovatskaya 《Russian Journal of Plant Physiology》2005,52(6):724-730
We studied the role of cryptochrome 1 (CRY1) and phytochromes in the photomorphogenetic responses of plants to the middle-wavelength region of photosynthetically active radiation. A comparison was performed of green light (GL) action on growth, GA activity and IAA and ABA contents during seedling deetiolation of two Arabidopsis thaliana (L.) Heynh lines of Landsnerg erecta ecotype (wild type Ler and mutant hy4) and of Phaseolus vulgaris L. It was shown that a growth responses of Ler hypocotyls to GL of 515 nm and Ler cotyledons to GL of 542 nm were weaker than those of the hy4 mutant defected in the CRY1 synthesis. Far-red light (730 nm) neutralized the effect of GL (533 nm) on the phytohormone balance in the primary kidney bean leaves. The data obtained permit a supposition that plants possess several photoregulatory systems functioning under GL of higher (515 nm) and lower emission energy (542–553 nm). A possible operation of GL receptors, other than cryptochrome 1 and phytochromes, is discussed. 相似文献
12.
13.
14.
为探究脐带血中胰岛素样生长因子Ⅰ(insulin like growth factor 1, IGF-1)的浓度和基因甲基化变化与巨大儿发生的关系,选择152名正常妊娠足月分娩的产妇和新生儿为对象,其中68名巨大儿,84名正常出生体重儿.收集产妇及新生儿的基本信息和脐带血样品. 采用双抗体夹心ABC ELISA法测定脐带血IGF-1蛋白浓度,基质辅助激光解吸附电离飞行时间质谱分析技术(MALDI-TOF)测定脐带血IGF-1基因启动子区CpG位点的甲基化水平. 结果显示,脐带血IGF-1启动子区CpG位点均呈低甲基化状态. 以所有研究对象出生体重的上四分位数(4 260 g)为拐点,出生体重<4 260g组的脐带血IGF 1浓度显著高于出生体重≥4 260 g组(P=0.015),且与出生体重呈正相关关系(r=0.242,P=0.011). 表明在出生体重<4 260 g范围内,脐带血IGF-1浓度的增加贡献于出生体重的增长. 但当胎儿过大时,存在负反馈调节机制,使脐带血IGF-1浓度降低,以限制胎儿过度增长. 这些结果提示,脐带血IGF-1浓度与出生体重呈双向性关联,两者均与处于低甲基化状态的脐带血IGF-1的甲基化程度无关. 相似文献
15.
Maintenance of cytosine methylation in plants is controlled by three DNA methyltransferases. MET1 maintains CG methylation, and DRM1/2 and CMT3 act redundantly to enforce non-CG methylation. RPS, a repetitive hypermethylated DNA fragment from Petunia hybrida, attracts DNA methylation when transferred into Petunia or other species. In Arabidopsis thaliana, which does not contain any RPS homologues, RPS transgenes are efficiently methylated in all sequence contexts. To test which DNA methylation pathways regulate RPS methylation, we examined maintenance of RPS methylation in various mutant backgrounds. Surprisingly, CG methylation was lost in a drm1/2/cmt3 mutant, and non-CG methylation was almost completely eliminated in a met1 mutant. An unusual cooperative activity of all three DNA methyltransferases is therefore required for maintenance of both CG and non-CG methylation in RPS. Other unusual features of RPS methylation are the independence of its non-CG methylation from the RNA-directed DNA methylation (RdDM) pathway and the exceptional maintenance of methylation at a CC(m)TGG site in some epigenetic mutants. This is indicative of activity of a methylation system in plants that may have evolved from the DCM methylation system that controls CC(m)WGG methylation in bacteria. Our data suggest that strict separation of CG and non-CG methylation pathways does not apply to all target regions, and that caution is required in generalizing methylation data obtained for individual genomic regions. 相似文献
16.
17.
18.
Methylation of the Tumor Suppressor Gene <Emphasis Type="Italic">RASSF1A</Emphasis> in Human Tumors 总被引:8,自引:0,他引:8
Loss of heterozygosity of a segment at 3p21.3 is frequently observed in lung cancer and several other carcinomas. We have identified the Ras-association domain family 1A gene (RASSF1A), which is localized at 3p21.3 in a minimum deletion sequence. De novo methylation of the RASSF1A promoter is one of the most frequent epigenetic inactivation events detected in human cancer and leads to silencing of RASSF1A expression. Hypermethylation of RASSF1A was frequently found in most major types of human tumors including lung, breast, prostate, pancreas, kidney, liver, cervical, thyroid and many other cancers. The detection of RASSF1A methylation in body fluids such as serum, urine, and sputum promises to be a useful marker for early cancer detection. The functional analysis of RASSF1A reveals a potential involvement of this protein in apoptotic signaling, microtubule stabilization, and cell cycle progression. 相似文献
19.
Dual control of ROS1‐mediated active DNA demethylation by DNA damage‐binding protein 2 (DDB2) 下载免费PDF全文
Rafael R. Ariza Teresa Roldán Arjona Jean Molinier 《The Plant journal : for cell and molecular biology》2017,92(6):1170-1181
By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re‐established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage‐binding protein 2 (DDB2) and the ROS1‐mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3′‐phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1‐mediated active DNA demethylation. 相似文献