首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo.  相似文献   

2.
On chemokine stimulation, leucocytes produce and secrete proteolytic enzymes for innate immune defence mechanisms. Some of these proteases modify the biological activity of the chemokines. For instance, neutrophils secrete gelatinase B (matrix metalloproteinase-9, MMP-9) and neutrophil collagenase (MMP-8) after stimulation with interleukin-8/CXCL8 (IL-8). Gelatinase B cleaves and potentiates IL-8, generating a positive feedback. Here, we extend these findings and compare the processing of the CXC chemokines human and mouse granulocyte chemotactic protein-2/CXCL6 (GCP-2) and the closely related human epithelial-cell derived neutrophil activating peptide-78/CXCL5 (ENA-78) with that of human IL-8. Human GCP-2 and ENA-78 are cleaved by gelatinase B at similar rates to IL-8. In addition, GCP-2 is cleaved by neutrophil collagenase, but at a lower rate. The cleavage of GCP-2 is exclusively N-terminal and does not result in any change in biological activity. In contrast, ENA-78 is cleaved by gelatinase B at eight positions at various rates, finally generating inactive fragments. Physiologically, sequential cleavage of ENA-78 may result in early potentiation and later in inactivation of the chemokine. Remarkably, in the mouse, which lacks IL-8 which is replaced by GCP-2/LIX as the most potent neutrophil activating chemokine, N-terminal clipping and twofold potentiation by gelatinase B was also observed. In addition to the similarities in the potentiation of IL-8 in humans and GCP-2 in mice, the conversion of mouse GCP-2/LIX by mouse gelatinase B is the fastest for any combination of chemokines and MMPs so far reported. This rapid conversion was also performed by crude neutrophil granule secretion under physiological conditions, extending the relevance of this proteolytic cleavage to the in vivo situation.  相似文献   

3.
Chemokines are important mediators of leukocyte migration during the inflammatory response. Post-translational modifications affect the biological potency of chemokines. In addition to previously identified NH2-terminally truncated forms, COOH-terminally truncated forms of the CXC chemokine murine granulocyte chemotactic protein-2 (GCP-2) were purified from conditioned medium of stimulated fibroblasts. The truncations generated 28 natural murine GCP-2 isoforms containing 69-92 residues, including most intermediate forms. Both NH2- and COOH-terminal truncations of GCP-2 resulted in enhanced chemotactic potency for human and murine neutrophils in vitro. The truncated isoform GCP-2(9-78) was 30-fold more potent than intact GCP-2(1-92)/LPS-induced CXC chemokine (LIX) at inducing an intracellular calcium increase in human neutrophils. After intradermal injection in mice, GCP-2(9-78) was also more effective than GCP-2(1-92)/LIX at inducing neutrophil infiltration. Similar to human IL-8 and GCP-2, murine GCP-2(9-78) and macrophage inflammatory protein-2 (MIP-2) induced calcium increases in both CXCR1 and CXCR2 transfectants. Murine GCP-2(9-78) could desensitize the calcium response induced by MIP-2 in human neutrophils and vice versa. Furthermore, MIP-2 and truncated GCP-2(9-78), but not intact GCP-2(1-92)/LIX, partially desensitized the calcium response to human IL-8 in human neutrophils. Taken together, these findings point to an important role of post-translationally modified GCP-2 to replace IL-8 in the mouse.  相似文献   

4.
Neutrophil specific chemokines are potent chemoattractants for neutrophils. IL-8/CXCL8 is the most extensively studied member of this group, and its concentrations increase during inflammatory conditions of the newborn infant including sepsis and chronic lung disease. A significant amount of information exists on the effects of IL-8/CXCL8 on neutrophil chemotaxis of neonates, but little is known about the other neutrophil specific chemokines. The aim of this study was to determine the relative potency of the neutrophil specific chemokines on chemotaxis of neonatal neutrophils and to compare this effect with the effect on adult neutrophils. Neutrophils were isolated from cord blood or healthy adult donors and incubated in a Neuroprobe chemotaxis chamber. Chemokine concentrations ranging from 1-1000 ng/mL were used. Differences in chemotactic potency existed among the seven neutrophil specific chemokines. Specifically, at 100 ng/mL, the order was IL-8/CXCL8>GRO-alpha/CXCL1>GCP-2/CXCL6>NAP-2/CXCL7>ENA-78/CXCL5>GRO-gamma/CXCL2>GRO-beta/CXCL3. This pattern was observed for adult and neonatal neutrophils. We conclude that (1) neutrophils from cord blood exhibit the same pattern of potency for each ELR chemokine as neutrophils from adults, and (2) migration of neonatal neutrophils is significantly less than that of adults at every concentration examined except the lowest (1 ng/mL).  相似文献   

5.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

6.
We have previously shown that members of the ELR(+) CXC chemokine family, including IL-8; growth-related oncogenes alpha, beta, and gamma; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR(+) CXC chemokines has not been determined. Because all ELR(+) CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR(+) CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR(+) CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR(+) CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR(+) CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR(+) CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2(-/-) mice. We thus conclude that CXCR2 is the receptor responsible for ELR(+) CXC chemokine-mediated angiogenesis.  相似文献   

7.
PURPOSE: To determine levels of the chemokines CCL1/I-309, CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta, CCL7/MCP-3, CCL8/MCP-2, CXCL5/ENA-78, CXCL6/GCP-2, CXCL10/IP-10, and CXCL11/I-TAC in the vitreous humor and serum, from patients with proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and rhegmatogenous retinal detachment with no PVR (RD), and to investigate the expression of MCP-1, CXCL12/SDF-1, and the chemokine receptor CXCR3 in epiretinal membranes. METHODS: Paired vitreous humor and serum samples were obtained from patients undergoing vitrectomy for the treatment of RD (57 specimens), PVR (32 specimens), and PDR (88 specimens). The levels of chemokines were measured by enzyme-linked immunosorbent assays. Eighteen PDR and 5 PVR membranes were studied by immunohistochemical techniques. RESULTS: Of all the chemokines studied, only MCP-1 and IP-10 were detected in vitreous humor samples. MCP-1 levels in vitreous humor samples were significantly higher than in serum samples (p < 0.001). MCP-1 levels were significantly higher in vitreous humor samples from patients with PVR and PDR compared with RD (p = 0.0002). MCP-1 levels in vitreous humor samples from patients with active PDR were significantly higher than in inactive PDR cases (p = 0.0224). IP-10 levels in vitreous humor samples were significantly higher than in serum samples (p = 0.0035). IP-10 levels were significantly higher in vitreous humor samples from patients with PVR and PDR compared with RD (p = 0.0083). The incidence of IP-10 detection in vitreous humor samples was significantly higher in active PDR cases compared with inactive cases (p = 0.0214). There was a significant association between the incidence of IP-10 detection and increased levels of MCP-1 in vitreous humor samples from all patients, and patients with RD and PDR (p < 0.001 for all comparisons). MCP-1, and SDF-1 were localized in myofibroblasts in PVR and PDR membranes and in vascular endothelial cells in PDR membranes. CXCR3 was expressed by vascular endothelial cells in PDR membranes. CONCLUSION: MCP-1, IP-10 and SDF-1 may participate in pathogenesis of PVR and PDR. Myofibroblasts and vascular endothelial cells are the major cell types expressing MCP-1, SDF-1, and CXCR3 in epiretinal membranes.  相似文献   

8.
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the selected chemokines CCL2, CXCL8 and CXCL12. Human MSC were isolated from iliac crest bone marrow aspirates and showed a homogeneous population presenting a typical MSC-related cell surface antigen profile (CD14-, CD34-, CD44+, CD45-, CD166+, SH-2+). The expression profile of all 18 chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that MSC express CC, CXC, C and CX(3)C receptors. Gene expression and immunohistochemical analysis documented that MSC express chemokine receptors CCR2, CCR8, CXCR1, CXCR2 and CXCR3. A dose-dependent chemotactic activity of CXCR4 and CXCR1/CXCR2 ligands CXCL12 and CXCL8 (interleukin-8) was demonstrated using a 96-well chemotaxis assay. In contrast, the CCR2 ligand CCL2 (monocyte chemoattractant protein-1, MCP-1) did not recruited human MSC. In conclusion, we report that the chemokine receptor expression profile of human MSC is much broader than known before. Furthermore, for the first time, we demonstrate that human MSC migrate upon stimulation with CXCL8 but not CCL2. In combination with already known data on MSC recruitment and differentiation these are promising results towards in situ regenerative medicine approaches based on guiding of MSC to sites of degenerated tissues.  相似文献   

9.
Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GROα, CXCL2/GROβ, CXCL3/GROγ, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2 and CXCL8/IL-8 in competition binding, calcium mobilization, inositol triphosphate turnover, and chemotaxis assays using CXCR1- and CXCR2-expressing Chinese hamster ovary, 300.19, COS7, and L1.2 cells. The affinities of vCXCL1 for the CXCR1 and CXCR2 receptors were 44 and 5.6 nm, respectively, as determined in competition binding against radioactively labeled CXCL8. In calcium mobilization, phosphatidylinositol turnover, and chemotaxis assays, vCXCL1 acted as a highly efficacious activator of both receptors, with a rather low potency for the CXCR1 receptor but comparable with CXCL5 and CXCL7. It is suggested that CMV uses the UL146 gene product expressed in infected endothelial cells to attract neutrophils by activating their CXCR1 and CXCR2 receptors, whereby neutrophils can act as carriers of the virus to uninfected endothelial cells. In that way a lasting pool of CMV-infected endothelial cells could be maintained.  相似文献   

10.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   

11.
CXC趋化因子配体8(CXC chemokine ligand 8,CXCL8)在结直肠癌等多种肿瘤中高表达,并促进肿瘤恶性进展。研究发现,结直肠癌微环境中有大量M2型巨噬细胞浸润,但CXCL8是否影响M2型巨噬细胞的浸润及其潜在机制尚未可知。本文旨在探讨CXCL8对结直肠癌中M2型巨噬细胞浸润及趋化作用的影响。本研究首先分析了TCGA数据库结直肠癌样本中CXCL8表达水平及免疫细胞浸润情况,并在临床组织中进行验证。随后Western 印迹及qRT-PCR检测5种结直肠癌细胞株CXCL8的表达情况。佛波酯(PMA)及IL-4诱导THP-1至M2型巨噬细胞后,与HCT116、SW480细胞及过表达CXCL8的HCT116(CXCL8/HCT116)、SW480(CXCL8/SW480)共培养,检测M2型巨噬细胞趋化情况。白细胞介素1β(IL-1β)处理HCT116、SW480细胞,检测CXCL8表达情况,与M2型巨噬细胞共培养,分析趋化结果。结果显示,患者癌组织CXCL8表达高于癌旁组织,CXCL8高表达癌组织中存在更多M2型巨噬细胞浸润;IL-1β作用于HCT116或SW480后,CXCL8的mRNA及蛋白质表达水平升高(P<0.05)。Transwell实验证实,CXCL8趋化M2型巨噬细胞(P<0.05)。综上所述,结直肠癌细胞中CXCL8可由IL-1β诱导产生,CXCL8表达增加能够促进M2型巨噬细胞的趋化,结直肠癌微环境中M2型巨噬细胞大量浸润可能与CXCL8表达升高有关。  相似文献   

12.
13.
Citrullination, a posttranslational modification (PTM) recently discovered on inflammatory chemokines such as interleukin-8 (IL-8/CXCL8) and interferon-γ-inducible protein-10 (IP-10/CXCL10), seriously influences their biological activity. Citrullination or the deimination of arginine to citrulline is dependent on peptidylarginine deiminases (PADs) and has been linked to autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Chemokines are to date the first identified PAD substrates with receptor-mediated biological activity. We investigated whether cytokines that play a crucial role in RA, like interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α), may be citrullinated by PAD and whether such a PTM influences the biological activity of these cytokines. IL-1β and TNF-α were first incubated with PAD in vitro and the occurrence of citrullination was examined by Edman degradation and a recently developed detection method for citrullinated proteins. Both techniques confirmed that human TNF-α, but not IL-1β, was citrullinated by PAD. Citrullination of TNF-α reduced its potency to stimulate chemokine production in vitro on human primary fibroblasts. Concentrations of the inflammatory chemokines CXCL8, CXCL10 and monocyte chemotactic protein-1 (MCP-1/CCL2) were significantly lower in supernatants of fibroblasts induced with citrullinated TNF-α compared to unmodified TNF-α. However, upon citrullination TNF-α retained its capacity to induce apoptosis/necrosis of mononuclear cells, its binding potency to Infliximab and its ability to recruit neutrophils to the peritoneal cavity of mice.  相似文献   

14.
To exert a therapeutic effect, adoptively transferred tumor-specific CTLs must traffic to sites of tumor burden, exit the circulation, and infiltrate the tumor microenvironment. In this study, we examine the ability of adoptively transferred human CTL to traffic to tumors with disparate chemokine secretion profiles independent of tumor Ag recognition. Using a combination of in vivo tumor tropism studies and in vitro biophotonic chemotaxis assays, we observed that cell lines derived from glioma, medulloblastoma, and renal cell carcinoma efficiently chemoattracted ex vivo-expanded primary human T cells. We compared the chemokines secreted by tumor cell lines with high chemotactic activity with those that failed to elicit T cell chemotaxis (Daudi lymphoma, 10HTB neuroblastoma, and A2058 melanoma cells) and found a correlation between tumor-derived production of MCP-1/CCL2 (> or =10 ng/ml) and T cell chemotaxis. Chemokine immunodepletion studies confirmed that tumor-derived MCP-1 elicits effector T cell chemotaxis. Moreover, MCP-1 is sufficient for in vivo T cell tumor tropism as evidenced by the selective accumulation of i.v. administered firefly luciferase-expressing T cells in intracerebral xenografts of tumor transfectants secreting MCP-1. These studies suggest that the capacity of adoptively transferred T cells to home to tumors may be, in part, dictated by the species and amounts of tumor-derived chemokines, in particular MCP-1.  相似文献   

15.
Bone marrow-derived cells (BMCs) reside in the anterior stroma of the central and paracentral cornea, as well as all stromal layers of the peripheral cornea, in normal human eyes. We investigated the factors regulating the constitutive distribution of BMCs in normal human corneal stroma. Cultured human corneal keratocytes expressed several chemokines (growth-related oncogene/CXCL1-3, IL-8/CXCL8, and MCP-1/CCL2) in the Ab array study. CCR2 and CCR7 mRNAs were detected in BMCs by multiplex RT-PCR. Keratocytes/corneal epithelial cells and BMCs selected from normal human donor corneas by using magnetic beads expressed MCP-1/CCL2 and CCR2 protein, respectively. BMCs isolated from human corneal stroma showed a chemotactic response to MCP-1/CCL2 in the Boyden chamber assay. The chemotactic effect of keratocyte supernatant was inhibited by blockade of MCP-1/CCL2. This is the first work on constitutive expression of CCR2 by BMCs from the corneal stroma and MCP-1/CCL2 by keratocytes/epithelial cells. Our findings suggest that the interaction between MCP-1/CCL2 and CCR2 determines the distribution of constitutive BMCs in normal human corneal stroma.  相似文献   

16.
17.
A newly identified CX3C-chemokine, fractalkine, expressed on activated endothelial cells plays an important role in leucocyte adhesion and migration. Co-immobilized fractalkine with fibronectin or intercellular adhesion molecule-1 enhanced adhesion of THP-1 cells, which express the fractalkine receptor (CX3CR1), compared with that observed for each alone. That adherence was fractalkine-dependent and was confirmed in blocking studies. However, soluble fractalkine induced little chemotaxis in THP-1 cells in comparison to monocyte chemotactic protein-1 (MCP-1), which induced a strong chemotactic response. Moreover, the membrane form of fractalkine expressed on ECV304 cells reduced MCP-1 mediated chemotaxis of THP-1 cells. These results indicate that fractalkine may function as an adhesion molecule between monocytes and endothelial cells rather than as a chemotactic factor.  相似文献   

18.
TNF-alpha has numerous biological activities, including the induction of chemokine expression, and is involved in many gastric injuries. C-C chemokines [monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha] and C-X-C chemokines [MIP-2 and cytokine-induced neutrophil chemoattractant (CINC)-2alpha] mediate chemotaxis of monocytes and neutrophils, respectively. We examined the roles of TNF-alpha and dynamics of chemokine expression in gastric ulceration including ulcer recurrence and indomethacin-induced injury. Rats with healed chronic gastric ulcers received intraperitoneal TNF-alpha to induce ulcer recurrence. Some rats were given neutralizing antibodies against neutrophils or MCP-1 together with TNF-alpha. In a separate experiment, rats were orally administered 20 mg/kg indomethacin with or without pretreatment with pentoxifylline (an inhibitor of TNF-alpha synthesis) or anti-MCP-1 antibody. TNF-alpha (1 microg/kg) induced gastric ulcer recurrence after 48 h, which was completely prevented by anti-neutrophil antibody. TNF-alpha increased the number of macrophages and MCP-1 mRNA expression in scarred mucosa from 4 h, whereas it increased MPO activities (marker of neutrophil infiltration) and mRNA expression of MIP-2 and CINC-2alpha from 24 h. Anti-MCP-1 antibody inhibited leukocyte infiltration with reduction of the levels of C-X-C chemokines and prevented ulcer recurrence. Indomethacin treatment increased TNF-alpha/chemokine mRNA expression from 30 min and induced macroscopic erosions after 4 h. Pentoxifylline inhibited the indomethacin-induced gastric injury with reduction of neutrophil infiltration and expression of chemokine (MCP-1, MIP-2, and CINC-2alpha). Anti-MCP-1 antibody also inhibited the injury and these inflammatory responses but did not affect TNF-alpha mRNA expression. In conclusion, increased MCP-1 triggered by TNF-alpha may play a key role in gastric ulceration by regulating leukocyte recruitment and chemokine expression.  相似文献   

19.
20.
Xiao  Bao-Guo  Mousa  Alyaa  Kivisäkk  Pia  Seiger  Åke 《Brain Cell Biology》1998,27(8):575-580
The cellular infiltration found during CNS inflammation consists of monocytes and activated T cells, suggesting the presence of cell-specific chemotactic signals during inflammatory responses. Astrocyte chemokine expression might contribute to site-specific leukocyte infiltration within the CNS. To investigate the factors that regulate astrocyte chemokine expression, we examined the ability of human fetal astrocytes to induce β-family chemokine mRNA. Astrocyte-derived monocyte chemoattractant protein-1 (MCP-1), RANTES, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β mRNA were easily induced by lipopolysaccharide and/or the proinflammatory cytokines (IFNγ and/or TNF-α), respectively. Addition of both IFNγ and TNF-α together did not lead to an additive effect but resulted in the inhibition of MCP-1 and MIP-1β mRNA expression, indicating that interaction between chemokines and cytokines may play a key role in regulating the local immune response of resident and infiltrating cells at the site of lesion. Interestingly, ultraviolet light-inactivated measles virus, but not cytomegalovirus, strongly induced expression of MCP-1, RANTES, MIP-1α, and MIP-1β mRNA in human embryonic astrocytes, especially MCP-1 and MIP-1β. An association occurs between the β-family chemokine expression in astrocytes and inflammatory factors/virus, suggesting a possible role for β-family chemokines in the pathogenesis of CNS inflammatory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号