首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transformation-competent artificial chromosome system is able to clone and transfer genes efficiently in plants.In order to clone genes highly tolerant to barley yellow dwarf virus(BYDV),Aphids,drought and salt from Leymus multicaulis,the two TAC genomic libraries I and II were constructed in vector pYLTAC17 and pYLTAC747H/sacB,which contain about 165000 and 236000 recombinant clones sepa-rately.The genome coverage of the two libraries was totally estimated to be about 3―5 haploid genome equivalents,as size selection of genomic DNA fragments was approximately from 9 to 300 kb.Clones of the genomic libraries were collected as bulked pools each containing 500 clones or so,stored in twelve 96-deep-well plates and then were gridding in triplicate onto a high-density colony hybridization filter with a 3×3 pattern using a GeneTAC?G3 arraying robot after being transferred manually into three 384-well plates.Meanwhile 2501 and 2890 clones of Library in pYLTAC17 and in pYLTAC747H/sacB were stored individually in fourteen 384-well plates and then were automatically gridding in duplicate onto a high-density colony hybridization filter with a 6×6 pattern after a replication of plates.Nineteen positive clones were detected by using the probe glutahione reductase gene of L.multicaulis.TAC libraries constructed here can be used to isolate genomic clones containing target genes,and to carry out genome walking for positional cloning.Once the target TAC clones were isolated,they could be immediately transferred into plant genomes with the Agrobacterium system.  相似文献   

2.
As a genome model of fruit trees, peach (Prunus persica [L.] Batch) has advantages for studying structural and functional genomics. Okubo, a traditional peach variety used as a parent in Asian peach breeding, displays economically valuable agronomic traits. To develop an efficient platform for peach gene cloning and genomic research, a large-insert genomic DNA library of Okubo was constructed in a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, which can accept and stably maintain large genomic DNA fragments in bothEscherichia coli andAgrobacterium tumefaciens. The TAC library contains 41,472 recombinant clones with an average insert size of approximately 42 kb, and it is equivalent to 6 haploid peach genomes. The TAC library was stored in 2 ways: one copy as frozen cultures in 108 pieces of 384-well plates and another copy as bulked pools in 36 pieces of 96-well plates, each well containing 12 individual clones. The lack of hybridization signal to chloroplast and mitochondrial genes indicated that the TAC library had no significant cytoplast organelle DNA contamination. TAC clones were stable inE. coli cells until generation 100 and stable in bothE. coli andA. tumefaciens. Twenty-one clones containing the polygalacturonase-inhibiting protein (PGIP) gene were detected by using pooled PCR in the TAC library. Positive clones can be used for peach PGIP gene cloning and functional analysis. The library is well suited for gene cloning and genetic engineering in peach.  相似文献   

3.
Three large-insert genomic DNA libraries of common wheat, Triticum aestivum cv. Chinese Spring, were constructed in a newly developed transformation-competent artificial chromosome (TAC) vector, pYLTAC17, which accepts and maintains large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. The vector contains the cis sequence required for Agrobacterium-mediated gene transfer into grasses. The average insert sizes of the three genomic libraries were approximately 46, 65 and 120 kbp, covering three haploid genome equivalents. Genomic libraries were stored as frozen cultures in a 96-well format, each well containing approximately 300-600 colonies (12 plates for small library, four for medium-size library and four for large library). In each of the libraries, approximately 80% of the colonies harbored genomic DNA inserts of >50 kbp. TAC clones containing gene(s) of interest were identified by the pooled PCR technique. Once the target TAC clones were isolated, they could be immediately transferred into grass genomes with the Agrobacterium system. Five clones containing the thionin type I genes (single copy per genome), corresponding to each of the three genomes (A, B and D), were successfully selected by the pooled PCR method, in addition to an STS marker (aWG464; single copy per genome) and CAB (a multigene family). TAC libraries constructed as described here can be used to isolate genomic clones containing target genes, and to carry out genome walking for positional cloning.  相似文献   

4.
Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector   总被引:12,自引:0,他引:12  
This is the first report of large insert genomic DNA libraries constructed in a binary-BAC (BIBAC) vector. Genomic DNA libraries containing approximately 4.6 haploid nuclear genomic equivalents were constructed for Lycopersicon esculentum (cv. Mogeor) and Lycopersicon pennellii (LA716) in the BIBAC2 vector. The L. esculentum library has an average insert size of 125 kb and is comprised of 42 272 individual colonies stored as frozen cultures in a 384-well format (108 plates). The L. pennellii library has an average insert size of 90 kb and is comprised of 53 760 individual clones (140 384-well plates). In each of the libraries, it is estimated that 90% of the colonies contain genomic DNA inserts. The composition of the L. esculentum and L. pennellii libraries was determined by analyzing a series of randomly selected clones. The L. esculentum library was surveyed for clones containing chloroplast DNA (1.4%), mitochondrial DNA (0.012%) and repetitive DNA motifs. BIBAC clones that may contain a gene of interest can be identified from these libraries by colony hybridization with homologous or heterologous probes or by PCR pooling techniques. Once identified, BIBAC genomic DNA library clones are immediately suitable for Agrobacterium tumefaciens-mediated plant transformation.  相似文献   

5.
Gridded genomic libraries are crucial for the positional candidate gene approach. For this purpose we constructed a gridded genomic library from a female chicken using the vector sCos 1. About 110 000 cosmid clones were grown and replicated in 384-well plates. An average insert size of 39 kb was calculated from the analysis of 68 randomly selected clones. No chimerism could be observed from 31 in situ hybridisations. One replica of the library (number 125) has been transferred to the Resource Centre/Primary Database (RZPD) of the German Human Genome Project (DHGP). The whole library was gridded onto four nylon filters at high density for efficient identification of cosmid clones by colony hybridisation. Twenty-two probes were used for screening the library and each of them gave at least one positive signal. This result is in good agreement with a four-fold coverage of the genome as estimated from the insert length and number of recombinant clones. This library provides a powerful tool for rapid physical mapping and complex analysis of the chicken genome.  相似文献   

6.
Recent research has shown that BIBAC (binary bacterial artificial chromosome) and TAC (transformation-competent artificial chromosome) vector systems are very useful tools for map-based cloning of agronomically important genes in plant species. We have developed a new TAC vector that is suitable for both dicot and monocot transformation. Using this new TAC vector, we constructed large-insert genomic libraries of tomato and rice. The tomato library contains 96,996 clones (28.3-38.5 kb insert size) and has 3.18 haploid genome equivalents. The rice TAC library has 32.7 kb average insert size and has 9.24 haploid genome equivalents. The quality of these two libraries was tested using PCR to verify genome coverage. Individual clones were characterized to confirm insert integrity by Southern analysis, end sequencing and genetic mapping. To investigate the potential application of these TAC libraries in map-based cloning, TAC constructs containing a 45 kb fragment were introduced into the rice genome via Agrobacterium-mediated transformation. Molecular analysis indicates that the 45 kb fragment was successfully transferred into the rice genome. Although rearrangements of the introduced DNA were detected, 50% of regenerated plants contained at least one intact copy of the 45 kb clone and associated vector sequences. These libraries provide us with a valuable resource to rapidly isolate important genes in tomato and rice.  相似文献   

7.
用根据抗病基因保守区设计的一对简并性引物,从小麦-簇毛麦易位系6VS/6AL cDNA中PCR扩增获得一个具有抗病基因核苷酸结合位点(Nucleotide binding site,NBS)结构特点的DNA片段克隆N7。从小麦-簇毛麦易位系6VS/6AL基因组TAC(Transformation-competent artificial chromosome,TAC)文库的22块96孔板提取所有2112个克隆池(每个池含约1000个克隆)的质粒,再根据N7的核苷酸序列设计一对特异引物,用克隆池PCR(pooled PCR)法经分级筛选从文库中获得一个阳性克隆。以N7为探针,通过Southern杂交证实了该TAC克隆为真正含有抗病候选基因的克隆。研究结果表明克隆池PCR法对克隆数目巨大的基因组文库的筛选很有效。  相似文献   

8.
可转化人工染色体(Transformation competent Artificial Chromosome,TAC)是具有克隆和转移大片段基因能力的新型载体,是植被基因克隆和转化的有效工具。为了克隆泪科抗白粉病基因和其它基因,本研究用TCA载体pYLTAC17构建了带有抗白粉病基因Pm21的小麦=簇毛麦6VS/6AL易位系的基因组DNA文库。该文库包含210万个克隆平均插入征段35lb,相当于  相似文献   

9.
A bacterial artificial chromosome (BAC) library was constructed by cloning HindIII-digested high molecular weight DNA from a gynogenetic channel catfish, Ictalurus punctatus, into the vector pBeloBAC11. Approximately 53 500 clones were arrayed in 384-well plates and stored at -80°C (CCBL1), while clones from a smaller insert size fraction were stored at -80°C without arraying (CCBL2). Pulsed-field gel electrophoresis of 100 clones after NotI digestion revealed an average insert size of 165 kb for CCBL1 and 113 kb for CCBL2. Further characterization of CCBL1 demonstrated that 10% of the clones did not contain an insert. CCBL1 provides a 7.2-fold coverage of the channel catfish haploid genome. PCR-based screening demonstrated that 68 out of 74 unique loci were present in the library. This represents a 92% chance to find a unique sequence. These libraries will be useful for physical mapping of the channel catfish genome, and identification of genes controlling major traits in this economically important species.  相似文献   

10.
A bacterial artificial chromosome (BAC) library containing a large genomlc DNA insert is an important tool for genome physical mapping, map-based cloning, and genome sequencing. To Isolate genes via a map-based cloning strategy and to perform physical mapping of the cotton genome, a high-quality BAC library containing large cotton DNA Inserts Is needed. We have developed a BAC library of the restoring line 0-613-2R for Isolating the fertility restorer (Rf1) gene and genomic research in cotton (Gossypium hirsutum L.). The BAC library contains 97 825 clones stored In 255 pieces of a 384-well mlcrotiter plate. Random samples of BACs digested with the Notl enzyme Indicated that the average Insert size Is approximately 130 kb, with a range of 80-275 kb, and 95.7% of the BAC clones in the library have an average insert size larger than 100 kb. Based on a cotton genome size of 2 250 Mb, library coverage is 5.7 × haploid genome equivalents. Four clones were selected randomly from the library to determine the stability of the BAC clones. There were no different fingerprints for 0 and 100 generations of each clone digested with Notl and Hlndiii enzymes. Thus, the atabiiity of a single BAC clone can be sustained at iesat for 100 generations. Eight simple sequence repeat (SSR) markers flanking the Rf; gene were chosen to screen the BAC library by pool using PCR method and 25 positive clones were identified with 3.1 positive clones per SSR marker.  相似文献   

11.
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.  相似文献   

12.
The pacific white shrimp (Litopenaeus vannamei) is one of the most economically important marine aquaculture species in the world. To facilitate gene cloning and characterization, genome analysis, physical mapping, and molecular selection breeding of marine shrimp, we have developed the techniques to isolate high-quality megabase-sized DNA from hemocyte nuclear DNA of female shrimp and constructed a bacterial artificial chromosome (BAC) genomic library for the species. The library was constructed in the Hind III site of the vector pECBAC1, consisting of 101,760 clones arrayed in 265 384-well microtiter plates, with an average insert size of 101 kb, and covering the genome approximately fivefold. To characterize the library, 92,160 clones were spotted onto high-density nylon filters for hybridization screening. A set of 18 pairs of overgo probes designed from eight cDNA sequences of L. vannamei genes were used in hybridization screening, and 35 positive clones were identified. These results suggest that the shrimp BAC libraries will provide a useful resource for screening of genomic regions of interest candidate genes, gene families, or large-sized synthetic DNA region and promote future works on comparative genomics, physical mapping, and large-scale genome sequencing in the species.  相似文献   

13.
We have constructed a bacterial artificial chromosome (BAC) library for a European honey bee strain using the cloning enzyme HindIII in order to develop resources for structural genomics research. The library contains 36,864 clones (ninety-six 384-well plates). A random sampling of 247 clones indicated an average insert size of 113 kb (range = 27 to 213 kb) and 2% empty vectors. Based on an estimated genome size of 270 Mb, this library provides approximately 15 haploid genome equivalents, allowing >99% probability of recovering any specific sequence of interest. High-density colony filters were gridded robotically using a Genetix Q-BOT in a 4 x 4 double-spotted array on 22.5-cm2 filters. Screening of the library with four mapped honey bee genomic clones and two bee cDNA probes identified an average of 21 positive signals per probe, with a range of 7-38 positive signals per probe. An additional screening was performed with nine aphid gene fragments and one Drosophila gene fragment resulting in seven of the nine aphid probes and the Drosophila probe producing positive signals with a range of 1 to 122 positive signals per probe (average of 45). To evaluate the utility of the library for sequence tagged connector analysis, 1152 BAC clones were end sequenced in both forward and reverse directions, giving a total of 2061 successful reads of high quality. End sequences were queried against SWISS-PROT, insect genomic sequence GSS, insect EST, and insect transposable element databases. Results in spreadsheet format from these searches are publicly available at the Clemson University Genomics Institute (CUGI) website in a searchable format (http://www.genome.clemson.edu/projects/stc/bee/AM__Ba/).  相似文献   

14.
Magnaporthe grisea(Hebert) Barr causes rice blast, one of the most devastating diseases of rice (Oryza sativa) worldwide. This fungus is an ideal organism for studying a number of aspects of plant–pathogen interactions, including infection-related morphogenesis, avirulence, and pathogen evolution. To facilitateM. griseagenome analysis, physical mapping, and positional cloning, we have constructed a bacterial artificial chromosome (BAC) library from the rice infecting strain 70-15. A new method was developed for separation of partially digested large-molecular-weight DNA fragments that facilitated library construction with large inserts. The library contains 9216 clones, with an average insert size of 130 kbp (>25 genome equivalents) stored in 384-well microtiter plates that can be double spotted robotically on to a single nylon membrane. Several unlinked single-copy DNA probes were used to screen 4608 clones in the library and an average of 13 (minimum of 6) overlapping BAC clones was found in each case. Hybridization of total genomic DNA to the library and analysis of individual clones indicated that ≈26% of the clones contain single-copy DNA. Approximately 35% of BAC clones contained the retrotransposon MAGGY. The library was used to identify BAC clones containing a adenylate cyclase gene (mac1). In addition, a 550-kbp contig composed of 6 BAC clones was constructed that encompassed two adjacent RFLP markers on chromosome 2. These data show that the BAC library is suitable for genome analysis ofM. grisea.Copies of colony hybridization membranes are available upon request.  相似文献   

15.
Amphioxus is a crucial organism for the study of vertebrate evolution. Although a genomic BAC library of Branchiostoma floridae has been constructed, we report here another BAC library construction of its distant relative species Branchiostoma belcheri. The amphioxus BAC library established in present study consists of 45,312 clones arrayed in one hundred and eighteen 384-well plates. The average insert fragment size was 120 kb estimated by Pulsed Field Gel Electrophoresis (PFGE) analysis of 318 randomly selected clones. The representation of the library is about 12 equivalent to the genome, allowing a 99.9995% probability of recovering any specific sequence of interest. We further screened the library with 4 single copied Amphi-Pax genes and identified total of 26 positive clones with average of 6.5 clones for each gene. The result indicates this library is well suited for many applications and should also serve as a useful complemental resource for the scientific community.  相似文献   

16.
【目的】稻曲病(Rice false smut)是由稻曲病菌[Villosiclava virens (Cooke) Tak.]引起的严重危害水稻的真菌病害。构建稻曲病菌UV-2的大片段DNA细菌人工染色体(Bacterial artificial chromosome, BAC)文库, 为致病相关基因的鉴定及在图位克隆、比较基因组学等方面的研究奠定基础。【方法】以幼嫩菌丝为材料制备大分子基因组DNA包埋块, 用Hind III部分酶解后经脉冲凝胶电泳筛选, 回收大片段DNA并与pIndigoBAC536-S 载体连接, 连接产物转化大肠杆菌菌株DH10B T1 Phage-Resistant 细胞后进行蓝白斑筛选, 白色菌落捡入384孔板置于?80 °C低温保存。【结果】成功构建UV-2菌株的高质量、高覆盖度的BAC文库, 该文库共含10 368个克隆, 平均插入片段为124.4 kb, 空载率小于1%, 约覆盖该菌基因组的36.8倍。【结论】克服了真菌大分子基因组DNA制备难控制的技术难题, 建立了首个稻曲病菌的BAC文库。该文库已作为一种公共基因组资源向研究者开放(http://GResource.hzau.edu.cn)。  相似文献   

17.
To facilitate gene discovery in the Rosaceae, a bacterial artificial chromosome (BAC) library was constructed using high-molecular-weight (HMW) DNA from apricot leaves ( Prunus armeniaca L.). The library contains 101,376 clones (264, 384-well plates) with an average insert size of 64 kb, equivalent to 22-fold genome coverage. In the first application of this library, high-density filters were screened for self-incompatibility genes using apricot DNA probes. Eight positive BAC clones were detected and fingerprinted to determine clone relationships and assemble contigs. These results demonstrate the suitability of this library for gene identification and physical mapping of the apricot genome.Communicated by R. Hagemann  相似文献   

18.
M Luo  Y H Wang  D Frisch  T Joobeur  R A Wing  R A Dean 《Génome》2001,44(2):154-162
Utilizing improved methods, two bacterial artificial chromosome (BAC) libraries were constructed for the multidisease-resistant line of melon MR-1. The HindIII library consists of 177 microtiter plates in a 384-well format, while the EcoRI library consists of 222 microtiter plates. Approximately 95.6% of the HindIII library clones contain nuclear DNA inserts with an average size of 118 kb, providing a coverage of 15.4 genome equivalents. Similarly, 96% of the EcoRI library clones contain nuclear DNA inserts with an average size of 114 kb, providing a coverage of 18.7 genome equivalents. Both libraries were evaluated for contamination with high-copy vector, empty pIndigoBac536 vector, and organellar DNA sequences. High-density filters were screened with two genetic markers FM and AM that co-segregate with Fom-2, a gene conferring resistance to races 0 and 1 of Fusarium wilt. Fourteen and 18 candidate BAC clones were identified for the FM and AM probes, respectively, from the HindIII library, while 34 were identified for the AM probe from filters A, B, and C of the EcoRI library.  相似文献   

19.
A plant transformation-competent binary bacterial artificial chromosome (BIBAC) library was constructed from Musa acuminata cv. Tuu Gia (AA), a black Sigatoka-resistant diploid banana. After digestion of high-molecular-weight banana DNA by HindIII, several methods of DNA size selection were tested, followed by ligation, using a vector/insert molar ratio of 4:1. The library consists of 30,700 clones stored in 80 384-well microtiter plates. The mean insert size was estimated to be 100 kb, and the frequency of inserts with internal NotI sites was 61%. The majority of insert sizes fell into the range of 100±20 kb, making them suitable for Agrobacterium-mediated transformation. Only 1% and 0.9% of the clones contain chloroplast and mitochondrial DNA, respectively. This is the first BIBAC library for banana, estimated to represent five times its haploid genome (600 Mbp). It was demonstrated by hybridization that the library contains typical members of resistance gene and defense gene families that can be used for transformation of disease susceptible banana cultivars for banana genetic improvement.  相似文献   

20.
Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号