首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Wheat (Triticum aestivum L. cv Albis) was grown in open-top chambers in the field and fumigated daily with charcoal-filtered air (0.015 microliters per liter O3), nonfiltered air (0.03 microliters per liter O3), and air enriched with either 0.07 or 0.10 microliters per liter ozone (seasonal 8 hour/day [9 am-5 pm] mean ozone concentration from June 1 until July 10, 1987). Photosynthetic 14CO2 uptake was measured in situ. Net photosynthesis, dark respiration, and CO2 compensation concentration at 2 and 21% O2 were measured in the laboratory. Leaf segments were freeze-clamped in situ for the determination of the steady state levels of ribulose 1,5-bisphosphate, 3-phosphoglycerate, triose-phosphate, ATP, ADP, AMP, and activity of ribulose, 1,5-bisphosphate carboxylase/oxygenase. Photosynthesis of flag leaves was highest in filtered air and decreased in response to increasing mean ozone concentration. CO2 compensation concentration and the ratio of dark respiration to net photosynthesis increased with ozone concentration. The decrease in photosynthesis was associated with a decrease in chlorophyll, soluble protein, ribulose bisphosphate carboxylase/oxygenase activity, ribulose bisphosphate, and adenylates. No decrease was found for triose-phosphate and 3-phosphoglycerate. The ratio of ATP to ADP and of triosephosphate to 3-phosphoglycerate were increased suggesting that photosynthesis was limited by pentose phosphate reductive cycle activity. No limitation occurred due to decreased access of CO2 to photosynthetic cells since the decrease in stomatal conductance with increasing ozone concentration did not account for the decrease in photosynthesis. Ozonestressed leaves showed an increased degree of activation of ribulose bisphosphate carboxylase/oxygenase and a decreased ratio of ribulose bisphosphate to initial activity of ribulose bisphosphate carboxylase/oxygenase. Nevertheless, it is suggested that photosynthesis in ozone stressed leaves is limited by ribulose bisphosphate carboxylation possibly due to an effect of ozone on the catalysis by ribulose bisphosphate carboxylase/oxygenase.  相似文献   

2.
Sugar Beets (Beta vulgaris L. cv F58-554H1) were cultured hydroponically in growth chambers. Leaf orthophosphate (Pi) levels were varied nutritionally. The effect of decreased leaf phosphate (low-P) status was determined on the diurnal changes in the pool sizes of leaf ribulose 1,5-bisphosphate (RuBP), 3-phosphoglycerate (PGA), triose phosphate, fructose 1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, adenylates, nicotinamide nucleotides, and Pi. Except for triose phosphate, low-P treatment caused a marked reduction in the levels of leaf sugar phosphates (on a leaf area basis) throughout the diurnal cycle. Low-P treatment decreased the average leaf RuBP levels by 60 to 69% of control values during the light period. Low-P increased NADPH levels and NADPH/NADP+ ratio but decreased ATP; the ATP/ADP ratio was unaffected. Low P treatment caused a marked reduction in RuBP regeneration (RuBP levels were half the RuBP carboxylase binding site concentration) but did not depress PGA reduction to triose phosphate. These results indicate that photosynthesis in low-P leaves was limited by RuBP regeneration and that RuBP formation in low-P leaves was not limited by the supply of ATP and NADPH. We suggest that RuBP regeneration was limited by the supply of fixed carbon, an increased proportion of which was diverted to starch synthesis.  相似文献   

3.
Intact chloroplasts isolated from spinach were illuminated in the absence of inorganic phosphate (Pi) or with optimum concentrations of Pi added to the reaction medium. In the absence of Pi photosynthesis declined after the first 1–2 min and was less than 10% of the maximum rate after 5 min. Export from the chloroplast was inhibited, with up to 60% of the 14C fixed being retained in the chloroplast, compared to less than 20% in the presence of Pi. Despite the decreased export, chloroplasts depleted of Pi had lower levels of triose phosphate while the percentage of total phosphate in 3-phosphoglycerate was increased. Chloroplast ATP declined during Pi depletion and reached dark levels after 3–4 min in the light without added Pi. At this point, stromal Pi concentration was 0.2 mM, which would be limiting to ATP synthesis. Addition of Pi resulted in a rapid burst of oxygen evolution which was not initially accompanied by net CO2 fixation. There was a large decrease in 3-phosphoglycerate and hexose plus pentose monophosphates in the chloroplast stroma and a lesser decrease in fructose-1,6-bisphosphate. Stromal levels of triose phosphate, ribulose-1,5-bisphosphate and ATP increased after resupply of Pi. There was an increased export of 14-labelled compounds into the medium, mostly as triose phosphate. Light activation of both fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase was decreased in the absence of Pi but increased following Pi addition.It is concluded that limitation of Pi supply to isolated chloroplasts reduced stromal Pi to the point where it limits ATP synthesis. The resulting decrease in ATP inhibits reduction of 3-phosphoglycerate to triose phosphate via mass action effects on 3-phosphoglycerate kinase. The lack of Pi in the medium also inhibits export of triose phosphate from the chloroplast via the phosphate transporter. Other sites of inhibition of photosynthesis during Pi limitation may be located in the regeneratige phase of the reductive pentose phosphate pathway.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase - MP Hexose plus pentose monophosphates - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - TP Triose Phosphate  相似文献   

4.
Earlier work (SE Taylor, N Terry [1984] Plant Physiol 75: 82-86) has shown that the rate of photosynthesis may be colimited by photosynthetic electron transport capacity, even at low intercellular CO2 concentrations. Here we monitored leaf metabolites diurnally and the activities of key Calvin cycle enzymes in the leaves of three treatment groups of sugar beet (Beta vulgaris L.) plants representing three different in vivo photochemical capacities, i.e. Fe-sufficient (control) plants, moderately Fe-deficient, and severely Fe-deficient plants. The results show that the decrease in photosynthesis with Fe deficiency mediated reduction in photochemical capacity was through a reduction in ribulose 1,5-bisphosphate (RuBP) regeneration and not through a decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Based on measurements of ATP and NADPH and triose phosphate/3-phosphoglycerate ratios in leaves, there was little evidence that photosynthesis and RuBP regeneration in Fe-deficient leaves were limited directly by the supply of ATP and NADPH. It appeared more likely that photochemical capacity influenced RuBP regeneration through modulation of enzymes in the photosynthetic carbon reduction cycle between fructose-6-phosphate and RuBP; in particular, the initial activity of ribulose-5-phosphate kinase was strongly diminished by Fe deficiency. Starch and sucrose levels changed independently of one another to some extent during the diurnal period (both increasing in the day and decreasing at night) but the average rates of starch or sucrose accumulation over the light period were each proportional to photochemical capacity and photosynthetic rate.  相似文献   

5.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

6.
Karl-Josef Dietz  Ulrich Heber   《BBA》1984,767(3):432-443
Rates of photosynthesis of spinach leaves were varied by varying light intensity and CO2 concentration. Metabolism of the leaves was then arrested by freezing them in liquid nitrogen. Chloroplasts were isolated by a nonaqueous procedure. In the chloroplast fractions, levels of intermediates of the carbon reduction cycle were determined and considered in relation to the photosynthetic flux situation of the leaves at the time before freezing. During induction of photosynthesis, ribulose 1,5-bisphosphate levels increased in parallel with CO2 fixation. In the steady state, a similar relation between ribulose 1,5-bisphosphate levels and CO2 uptake was observed at light intensities between 0 and 50 W·m−2. A further increase in light intensity increased CO2 fixation rates but not ribulose 1,5-bisphosphate levels. Increasing the CO2 concentration resulted in increased CO2 uptake, whereas ribulose 1,5-bisphosphate levels decreased. Even under CO2 saturation, ribulose 1,5-bisphosphate levels were about 100 nmol/mg chlorophyll corresponding to about 3.5 mM ribulose 1,5-bisphosphate in the chloroplast stroma. This suggests that even under CO2 saturation, ribulose-1,5-bisphosphate carboxylase limits photosynhetic CO2 uptake. Mass action ratios calculated from measured metabolite levels demonstrated that the thermodynamic gradient required for the regeneration of ribulose 1,5-bisphosphate from hexosephosphate and triosephosphate increased considerably as photosynthetic flux increased. Similar calculations revealed that the enzymatic apparatus responsible for the reduction of 3-phosphoglycerate to dihydroxyacetone phosphate is not displaced much from equilibrium even under maximum rates of photosynthesis at saturating CO2. The same is true for aldolase. Fructose-1,6-bisphosphatase also did not limit Calvin cycle turnover. Only at very low light intensities and during the first minutes of the induction period was the ratio of fructose 1,6-bisphosphate to fructose 6-phosphate high. This observation was more readily explained in terms of fructose 1,6-bisphosphate binding to ribulose-1,5-bisphosphate carboxylase than by a rate limitation imposed by insufficient activation of fructose-1,6-bisphosphatase.  相似文献   

7.
A method for determining the subcellular metabolite levels in spinach protoplasts is described. The protoplasts are disrupted by centrifugation through a nylon net, releasing intact chloroplasts which pass through a layer of silicone oil into perchloric acid while the remaining cytoplasmic components remain over the oil and are simultaneously quenched as acid is centrifuged into them. Cross-contamination is measured and corrected for using ribulose 1,5-bisphosphate as a chloroplastic marker and phosphoenolpyruvate carboxylase as a cytoplasmic marker. A method for separation of intact protoplasts from the medium by silicone oil centrifugation is described, which allows a correction to be made for the effect of free chloroplasts and broken protoplasts. Methods for inhibiting chloroplast photosynthesis, without inhibiting protoplasts, are presented. It is demonstrated that ribulose 1,5-bisphosphate, ATP, ADP, AMP, inorganic phosphate, hexose phosphate, triose phosphate, fructose 1,6-bisphosphate, and 3-phosphoglycerate can be reliably recovered in the subcellular fractions isolated from protoplasts, and measured by enzymic substrate analysis.  相似文献   

8.
Ribulose 1,5-bisphosphate carboxylase/oxygenase purified from malate-grown Thiocapsa roseopersicina required Mg2+ for the activation of both carboxylase and oxygenase activities. Mg2+ was either not required or required at very low concentrations for catalysis by both enzyme activities. EDTA and dithiothreitol had no effect on ribulose 1,5-biphosphate oxygenase. The K0.5 values with respect to Mg2+ for activation of the carboxylase and oxygenase activities were 8.4 and 2 mm, respectively. Ribulose 1,5-biphosphate carboxylase and oxygenase activities revealed differential sensitivities to 6-phosphogluconate. This ligand at 1 mm inhibited the carboxylase activity 30%, whereas the oxygenase activity was inhibited by 69%.  相似文献   

9.
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes carboxylation of ribulose-1,5-bisphosphate, the first in a series of reactions leading to the incorporation of atmospheric CO2 into biomass. Rubisco requires Rubisco activase (RCA), an AAA+ ATPase that reactivates Rubisco by remodelling the conformation of inhibitor-bound sites. RCA is regulated by the ratio of ADP:ATP, with the precise response potentiated by redox regulation of the alpha-isoform. Measuring the effects of ADP on the activation of Rubisco by RCA using the well-established photometric assay is problematic because of the adenine nucleotide requirement of 3-phosphoglycerate (3-PGA) kinase. Described here is a novel assay for measuring RCA activity in the presence of variable ratios of ADP:ATP. The assay couples the formation of 3-PGA from ribulose 1,5-bisphosphate and CO2 to NADH oxidation through cofactor-dependent phosphoglycerate mutase, enolase, PEP carboxylase and malate dehydrogenase. The assay was used to determine the effects of Rubisco and RCA concentration and ADP:ATP ratio on RCA activity, and to measure the activation of a modified Rubisco by RCA. Variations of the basic assay were used to measure the activation state of Rubisco in leaf extracts and the activity of purified Rubisco. The assay can be automated for high-throughput processing by conducting the reactions in two stages.  相似文献   

10.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

11.
Variations in the endogenous concentrations of leaf metabolites were measured during the transition from steady-state photosynthesis in air to that in 5% CO2, 21% O2. The transition in the CO2 supply to the leaf caused a pronounced oscillation in the overall rate of photosynthesis, as indicated by chlorophyll a fluorescence, which was accompanied by large changes in the levels of metabolites associated with carbon metabolism. A dramatic increase in the ATP concentration occurred immediately following the gas transition and was maximal at the point at which the chlorophyll a fluorescence showed a transient decrease. During the first large fluorescence increase the ATP level rapidly declined. Oscillations in the level of 3-phosphoglycerate were the most pronounced of the photosynthetic metabolites measured. These accompanied the oscillations in chlorophyll a fluorescence which showed an inverse relationship to the oscillations in ATP/ADP ratio. The ribulose 1,5-bisphosphate concentration showed a small increase following the gas transition but subsequently fell much lower, enforced by the high level of CO2 supplied. Less pronounced oscillations in the intracellular concentrations of fructose 1,6-bisphosphate, fructose 6-phosphate, glucose 6-phosphate, and triose phosphate were also observed.  相似文献   

12.
Isolated wheat chloroplasts were pre-incubated in the dark inthe presence of various concentrations of inorganic phosphatewith or without carbon dioxide, oxaloacetate, glycerate, and3-phosphoglycerate. The effect of subsequent illumination onphotosynthetic oxygen evolution, ribulose bisphosphate carboxylaseactivity, ATP content, and ribulose bisphosphate content wasinvestigated. Inorganic phosphate had little effect on ribulosebisphosphate carboxylase activity in darkness or during theinitial phase of illumination, but it prevented the declinein activity that occurred during later stages of illumination,when photoreduction of CO2 was decreasing in rate. Additionof inorganic phosphate to chloroplasts illuminated without phosphaterestored the ribulose bisphosphate carboxylase activity, increasedthe ATP, and decreased the ribulose bisphosphate in the organelles.The responses to CO2, oxaloacetate, glycerate, and 3-phosphoglyceratesuggest that the decreased activity of ribulose bisphosphatecarboxylase during photosynthesis results from ATP consumption. Purified ribulose bisphosphate carboxylase was activated byinorganic phosphate, but this activation did not occur in thepresence of ATP. ATP inhibited ribulose bisphosphate carboxylasewhen it was present in combination with various photosyntheticmetabolites. Inactivation of ribulose bisphosphate carboxylase in chloroplasts,illuminated in the absence of inorganic phosphate, is not dueto lack of activation by inorganic phosphate or ATP. It mayresult from decreased stromal pH. Key words: Ribulose bisphosphate carboxylase, Chloroplasts, Wheat, Phosphate, ATP  相似文献   

13.
Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.  相似文献   

14.
Kent SS  Young JD 《Plant physiology》1980,65(3):465-468
An assay was developed for simultaneous kinetic analysis of the activities of the bifunctional plant enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39]. [1-14C,5-3H]Ribulose 1,5-bisphosphate (RuBP) was used as the labeled substrate. Tritium enrichment of the doubly labeled 3-phosphoglycerate (3-PGA) product, common to both enzyme activities, may be used to calculate Vc/Vo ratios from the expression A/(B-A) where A and B represent the 3H/14C isotope ratios of doubly labeled RuBP and 3-PGA, and Vc and Vo represent the activities of carboxylase and oxygenase, respectively. Doubly labeled substrate was synthesized from [2-14C]glucose and [6-3H]glucose using the enzymes of the pentose phosphate pathway coupled with phosphoribulokinase.  相似文献   

15.
At bicarbonate concentrations equivalent to air levels of CO2, activation of ribulosebisphosphate carboxylase/oxygenase (rubisco) was inhibited by micromolar concentrations of glyoxylate in intact, lysed, and reconstituted chloroplasts and in stromal extracts. The concentration of glyoxylate required for 50% inhibition of light activation in intact chloroplasts was estimated to be 35 micromolar. No direct inhibition by glyoxylate was observed with purified rubisco or rubisco activase at micromolar concentrations. Levels of ribulose 1,5-bisphosphate and ATP increased in intact chloroplasts following glyoxylate treatment. Results from experiments with well-buffered lysed and reconstituted chloroplast systems ruled out lowering of pH as the cause of inhibition. With intact chloroplasts, micromolar glyoxylate did not prevent activation of rubisco at high (10 mM) concentrations of bicarbonate, indicating that rubisco could be spontaneously activated in the presence of glyoxylate. These results suggest the existence of a component of the in vivo rubisco activation system that is not yet identified and which is inhibited by glyoxylate.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - rubisco ribulosebisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

16.
Complete stoichiometry of the reaction catalyzed by ribulose 1,5-bisphosphate (RuBP) oxygenase from spinach and Rhodospirillum rubrum has been determined. Before initiation and after termination, RuBP has been measured either by release of equimolar orthophosphate at 25°C in the presence of 1 n NaOH or by complete carboxylation using 14CO2 and RuBP carboxylase. The RuBP-dependent oxygen consumption has been measured continuously with an oxygen electrode. After termination of catalysis, 3-phosphoglycerate production has been determined spectrophotometrically using phosphoglycerokinase, glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase, α-glycerophosphate dehydrogenase, ATP, and NADH. To measure phosphoglycolate, this product was first hydrolyzed with alkaline phosphatase and the resultant glycolate oxidized by glycolate oxidase. Attendant H2O2 formation catalyzed by peroxidase has then been measured colorimetrically. Interference by ribulose in the measurement of glycolate can be easily corrected. Procedures are rapid and do not require separation of reactants and products. Results are in excellent accord with the expected stoichiometry for catalysis by RuBP oxygenase and also enable an estimate of competing catalysis by RuBP carboxylase.  相似文献   

17.
P. J. Shaw  J. A. Henwood 《Planta》1985,165(3):333-339
The proteins ribulose 1,5-bisphosphate carboxylase/oxygenase, ATP synthase, light-harvesting chlorophyll a/b protein, and cytochrome f, have been localized in mesophyll chloroplasts of barley (Hordeum vulgare L.) by electron microscopy of immunogold-labelled sections. The light-harvesting chlorophyll a/b protein and cytochrome f are shown to be present in the grana, both within the stacks and at the margins, and in the stromal membranes. Although the absolute amount of labelling for these proteins is greater in the grana than in the stromal membranes, when expressed as label/membrane length the partitioning appears approximately equal between appressed and non-appressed membranes for both the light-harvesting chlorophyll a/b protein and cytochrome f. ATP synthase is restricted to the non-appressed thylakoid membranes, and ribulose 1,5-bisphosphate carboxylase/oxygenase is uniformly distributed through the stromal contents.Abbreviations CF1 ATP synthase - LHCPII light-harvesting chlorophyll a/b protein - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
A common observation in plants grown in elevated CO2 concentration is that the rate of photosynthesis is lower than expected from the dependence of photosynthesis upon CO2 concentration in single leaves of plants grown at present CO2 concentration. Furthermore, it has been suggested that this apparent down regulation of photosynthesis may be larger in leaves of plants at low nitrogen supply than at higher nitrogen supply. However, the available data are rather limited and contradictory. In this paper, particular attention is drawn to the way in which whole plant growth response to N supply constitutes a variable sink strength for carbohydrate usage and how this may affect photosynthesis. The need for further studies of the acclimation of photosynthesis at elevated CO2 in leaves of plants whose N supply has resulted in well-defined growth rate and sink activity is emphasised, and brief consideration is made of how this might be achieved.Abbreviations A rate of CO2 assimilation - Ci internal CO2 concentration - PCR photosynthetic carbon reduction - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

19.
Recently reported research from this laboratory has demonstrated the autotrophic growth of certain hydrogen-uptake-positive strains of Rhizobium japonicum and defined minimal conditions for such growth. Ribulose 1,5-bisphosphate carboxylase has been detected in autotrophically growing cells, but at low specific activity. Moreover, growth rates were low, and growth ceased at low cell densities. We report here improved autotrophic growth rates of R. japonicum SR through the use of a modified mineral salts/vitamins medium and a programmed increase in oxygen tension as autotrophic growth proceeds. Under these conditions, ribulose, 1,5-biphosphate carboxylase activity increased greater than 10-fold and crude-extract-uptake-hydrogenase activities were from 20 to 47 times those heretofore reported for free-living R. japonicum. It is likely that previous assays for these enzymes were done on preparations of cells in which their synthesis had been partially repressed. The contribution of CO2 fixation to organic carbon accumulation in autotrophic cells was assessed as sufficient to support observed growth. Enzymological determination of the product of carbon fixation has established a stoichiometric ratio of 1.9 mol of 3-phosphoglycerate per mol of CO2 fixed and unequivocally assigns the role of carbon fixation catalysis to ribulose 1,5-bisphosphate carboxylase. Ammonium served best as a nitrogen source, nitrate was less effective, and gaseous nitrogen would not support autotrophic growth. Ecological, evolutionary, and practical considerations of autotrophy in the rhizobia are briefly discussed in the light of our findings.  相似文献   

20.
The rate of photosynthesis under high light (1000 micromole quanta per square meter per second) and at 25°C was measured during development of the third leaf on wheat plants and compared with the activity of several photosynthetic enzymes and the level of metabolites. The rate of photosynthesis reached a maximum the 7th day after leaf emergence and declined thereafter. There was a high and significant correlation between the rate of photosynthesis per leaf area and the activities of the enzymes ribulose 5-phosphate kinase (r = 0.91), ribulose 1,5-bisphosphate (RuBP) carboxylase (r = 0.94), 3-phosphoglycerate (PGA) kinase (r = 0.82), and fructose 1,6-bisphosphatase (r = 0.80) per leaf area. There was not a significant correlation of photosynthesis rate with chlorophyll content. The rate of photosynthesis was strongly correlated with the level of PGA (r = 0.85) and inversely correlated with the level of triose phosphate (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate) (r = 0.92). RuBP levels did not change much during leaf development; therefore photosynthesis rate was not correlated with the level of RuBP. The rate of photosynthesis was at a maximum when the ratio of PGA/triose phosphate was high, and when the ratio of RuBP/PGA was low. Although several enzymes change in parallel with leaf development, the metabolite changes suggest the greatest degree of control may be through RuBP carboxylase. The sucrose content of the leaf was highest under high rates of photosynthesis. There was no evidence that later in leaf development, photosynthesis (measured under high light and at 25°C) was limited by utilization of photosynthate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号