首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
2.
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that invades the intestinal epithelium. Following invasion of epithelial cells, Salmonella survives and replicates within two distinct intracellular niches. While all of the bacteria are initially taken up into a membrane bound vacuole, the Salmonella‐containing vacuole or SCV, a significant proportion of them promptly escape into the cytosol. Cytosolic Salmonella replicates more rapidly compared to the vacuolar population, although the reasons for this are not well understood. SipA, a multi‐function effector protein, has been shown to affect intracellular replication and is secreted by cytosolic Salmonella via the invasion‐associated Type III Secretion System 1 (T3SS1). Here, we have used a multipronged microscopy approach to show that SipA does not affect bacterial replication rates per se, but rather mediates intra‐cytosolic survival and/or initiation of replication following bacterial egress from the SCV. Altogether, our findings reveal an important role for SipA in the early survival of cytosolic Salmonella.  相似文献   

3.
Salmonella Typhimurium (S. Typhimurium) is an enteric bacterium capable of invading a wide range of hosts, including rodents and humans. It targets different host cell types showing different intracellular lifestyles. S. Typhimurium colonizes different intracellular niches and is able to either actively divide at various rates or remain dormant to persist. A comprehensive tool to determine these distinct S. Typhimurium lifestyles remains lacking. Here we developed a novel fluorescent reporter, Salmonella INtracellular Analyzer (SINA), compatible for fluorescence microscopy and flow cytometry in single-bacterium level quantification. This identified a S. Typhimurium subpopulation in infected epithelial cells that exhibits a unique phenotype in comparison to the previously documented vacuolar or cytosolic S. Typhimurium. This subpopulation entered a dormant state in a vesicular compartment distinct from the conventional Salmonella-containing vacuoles (SCV) as well as the previously reported niche of dormant S. Typhimurium in macrophages. The dormant S. Typhimurium inside enterocytes were viable and expressed Salmonella Pathogenicity Island 2 (SPI-2) virulence factors at later time points. We found that the formation of these dormant S. Typhimurium is not triggered by the loss of SPI-2 effector secretion but it is regulated by (p)ppGpp-mediated stringent response through RelA and SpoT. We predict that intraepithelial dormant S. Typhimurium represents an important pathogen niche and provides an alternative strategy for S. Typhimurium pathogenicity and its persistence.  相似文献   

4.
5.
To establish systemic infections, Salmonella enterica serovar Typhimurium (S. Typhimurium) requires Salmonella pathogenicity island 2 (SPI‐2) to survive and replicate within macrophages. High expression of many SPI‐2 genes during the entire intracellular growth period within macrophages is essential, as it contributes to the formation of Salmonella‐containing vacuole and bacterial replication. However, the regulatory mechanisms underlying the sustained induction of SPI‐2 within macrophages are not fully understood. Here, we revealed a time‐dependent regulation of SPI‐2 expression mediated by a novel regulator PagR (STM2345) in response to the low Mg2+ and low phosphate (Pi) signals, which ensured the high induction of SPI‐2 during the entire intramacrophage growth period. Deletion of pagR results in reduced bacterial replication in macrophages and attenuation of systemic virulence in mice. The effects of pagR on virulence are dependent on upregulating the expression of slyA, a regulator of SPI‐2. At the early (0–4 hr) and later (after 4 hr) stage post‐infection of macrophages, pagR is induced by the low Pi via PhoB/R two‐component systems and low Mg2+ via PhoP/Q systems, respectively. Collectively, our findings revealed that the PagR‐mediated regulatory mechanism contributes to the precise and sustained activation of SPI‐2 genes within macrophages, which is essential for S. Typhimurium systemic virulence.  相似文献   

6.
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen that has evolved sophisticated molecular mechanisms to establish an intracellular niche within a specialised vesicular compartment, the Salmonella‐containing vacuole (SCV). The loss of the SCV and release of STM into the cytosol of infected host cells was observed, and a bimodal intracellular lifestyle of STM in the SCV versus life in the cytosol is currently discussed. We set out to investigate the parameters affecting SCV integrity and cytosolic release. A fluorescent protein‐based cytosolic reporter approach was established to quantify, time‐resolved, and on a single cell level, the release of STM into the cytosol of host cells. We observed that the extent of SCV damage and cytosolic release is highly dependent on experimental conditions such as multiplicity of infection, type of host cell line, and STM strain background. Trigger invasion mediated by the Salmonella Pathogenicity Island 1‐encoded type III secretion system (SPI1‐T3SS) and its effector proteins promoted cytosolic release, whereas cytosolic bacteria were rarely observed if entry was mediated by zipper invasion. Presence of SPI1‐T3SS effector SopE was identified as major factor for damage of the SCV in the early phase after STM invasion and sopE‐expressing strains showed higher levels of cytosolic release.  相似文献   

7.
Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI) and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS) of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains.  相似文献   

8.
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal S. enterica serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while many S. enterica serovar Typhimurium (STM) strains have a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of Salmonella. Inside host cells, the pathogen resides within the Salmonella-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed Salmonella-induced filaments (SIF). This study applies single cell analyses approaches, which are flow cytometry of Salmonella harboring dual fluorescent protein reporters, effector translocation, and correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal Salmonella.  相似文献   

9.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

10.
Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer''s patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides - pmrD and pmrHFIJKLM and genes with antioxidant function - mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin''s mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.  相似文献   

11.
12.
Salmonella enterica serovar Kentucky has become the most frequently isolated serovar from poultry in the United States over the past decade. Despite its prevalence in poultry, it causes few human illnesses in the United States. The dominance of S. Kentucky in poultry does not appear to be due to single introduction of a clonal strain, and its reduced virulence appears to correlate with the absence of virulence genes grvA, sseI, sopE, and sodC1. S. Kentucky''s prevalence in poultry is possibly attributable to its metabolic adaptation to the chicken cecum. While there were no difference in the growth rate of S. Kentucky and S. Typhimurium grown microaerophilically in cecal contents, S. Kentucky persisted longer when chickens were coinfected with S. Typhimurium. The in vivo advantage that S. Kentucky has over S. Typhimurium appears to be due to differential regulation of core Salmonella genes via the stationary-phase sigma factor rpoS. Microarray analysis of Salmonella grown in cecal contents in vitro identified several metabolic genes and motility and adherence genes that are differentially activated in S. Kentucky. The contributions of four of these operons (mgl, prp, nar, and csg) to Salmonella colonization in chickens were assessed. Deletion of mgl and csg reduced S. Kentucky persistence in competition studies in chickens infected with wild-type or mutant strains. Subtle mutations affecting differential regulation of core Salmonella genes appear to be important in Salmonella''s adaptation to its animal host and especially for S. Kentucky''s emergence as the dominant serovar in poultry.  相似文献   

13.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

14.
Salmonella enterica serovar Typhimurium is a Gram-negative bacterial pathogen causing gastroenteritis in humans and a systemic typhoid-like illness in mice. The capacity of Salmonella to cause diseases relies on the establishment of its intracellular replication niche, a membrane-bound compartment named the Salmonella-containing vacuole (SCV). This requires the translocation of bacterial effector proteins into the host cell by type three secretion systems. Among these effectors, SifA is required for the SCV stability, the formation of Salmonella-induced filaments (SIFs) and plays an important role in the virulence of Salmonella. Here we show that the effector SopD2 is responsible for the SCV instability that triggers the cytoplasmic release of a sifA mutant. Deletion of sopD2 also rescued intra-macrophagic replication and increased virulence of sifA mutants in mice. Membrane tubular structures that extend from the SCV are the hallmark of Salmonella-infected cells. Until now, these unique structures have not been observed in the absence of SifA. The deletion of sopD2 in a sifA mutant strain re-established membrane trafficking from the SCV and led to the formation of new membrane tubular structures, the formation of which is dependent on other Salmonella effector(s). Taken together, our data demonstrate that SopD2 inhibits the vesicular transport and the formation of tubules that extend outward from the SCV and thereby contributes to the sifA associated phenotypes. These results also highlight the antagonistic roles played by SopD2 and SifA in the membrane dynamics of the vacuole, and the complex actions of SopD2, SifA, PipB2 and other unidentified effector(s) in the biogenesis and maintenance of the Salmonella replicative niche.  相似文献   

15.

Background

In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice.

Methodology/Principal Findings

We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence.

Conclusions/Significance

Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type [1]. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.  相似文献   

16.
Although nontyphoidal Salmonella (NTS; including Salmonella Typhimurium) mainly cause gastroenteritis, typhoidal serovars (Salmonella Typhi and Salmonella Paratyphi A) cause typhoid fever, the treatment of which is threatened by increasing drug resistance. Our understanding of S. Typhi infection in human remains poorly understood, likely due to the host restriction of typhoidal strains and the subsequent popularity of the S. Typhimurium mouse typhoid model. However, translating findings with S. Typhimurium across to S. Typhi has some limitations. Notably, S. Typhi has specific virulence factors, including typhoid toxin and Vi antigen, involved in symptom development and immune evasion, respectively. In addition to unique virulence factors, both typhoidal and NTS rely on two pathogenicity‐island encoded type III secretion systems (T3SS), the SPI‐1 and SPI‐2 T3SS, for invasion and intracellular replication. Marked differences have been observed in terms of T3SS regulation in response to bile, oxygen, and fever‐like temperatures. Moreover, approximately half of effectors found in S. Typhimurium are either absent or pseudogenes in S. Typhi, with most of the remaining exhibiting sequence variation. Typhoidal‐specific T3SS effectors have also been described. This review discusses what is known about the pathogenesis of typhoidal Salmonella with emphasis on unique behaviours and key differences when compared with S. Typhimurium.  相似文献   

17.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

18.
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this prostaglandin.  相似文献   

19.
Ubiquitinated aggregates are formed in eukaryotic cells in response to several external stimuli, including exposure to bacterial lipopolysaccharide (LPS). Although Salmonella enterica serovar Typhimurium (S. Typhimurium) LPS has been shown to induce aggresome-like induced structures (ALIS) in macrophages, these have not been described in S. Typhimurium-infected macrophages. Given that LPS is present in infection, this suggests that S. Typhimurium might suppress the formation of ALIS. We found that S. Typhimurium induces the formation of ubiquitinated aggregates in epithelial cells and macrophages, but that their presence is masked by the deubiquitinase (DUB) activity of the S. Typhimurium virulence protein, SseL. SseL deubiquitinates SQSTM1/p62-bound proteins found in S. Typhimurium-induced aggregates and ALIS, and reduces the recruitment of autophagic components. While the functions of ALIS and other ubiquitinated aggregates remain unclear, they serve to sequester cytosolic proteins under a variety of stress conditions and are suggested to be involved in host immune defense. During infection, the deubiquitinase activity of SseL reduces autophagic flux in infected cells and favors bacterial replication. This is a new example of how a bacterial pathogen counteracts the autophagy pathway through the action of a translocated virulence protein.  相似文献   

20.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号