首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
植物蔗糖转运蛋白的基因与功能   总被引:16,自引:0,他引:16  
蔗糖是植物体内碳水化合物长距离转运的主要(甚至唯一)形式,为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输,以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来,已先后有多个SUT基因的cDNA得到克隆与功能分析,涉及34种双子叶与单子叶植物。每种植物都有一个中等规模的SUT基因家族,其不同成员之间具有较高的氨基酸序列同源性,但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能,以及研究方法等方面的研究进展,并简要介绍我们在橡胶树SUT基因研究上的初步结果。  相似文献   

2.
蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输和为库组织供应蔗糖的生理活动中起关键作用。本文介绍植物体内蔗糖转运蛋白基因家族、细胞定位与功能调节以及高等植物的蔗糖感受机制的研究进展。  相似文献   

3.
高等植物蔗糖转运的分子调控   总被引:2,自引:0,他引:2  
在高等植物中,蔗糖的合成、运输与分配是一个复杂的过程。蔗糖由源到库的运输不仅与植物的生长发育相关,还受到植物体内的激素水平以及外界环境条件变化等因素的影响。蔗糖转运蛋白介导了蔗糖在植物韧皮部的装载、运输和卸载,在某些库中的蔗糖转运和库组织分配的分子调控中起有重要的生理作用。此外,简要介绍了笔者实验室在橡胶树蔗糖转运蛋白基因研究方面的最新进展。  相似文献   

4.
甘薯(Ipomoea batatas)是重要的粮食和工业加工原料作物。蔗糖是植物体内碳水化合物长距离转运的主要形式,蔗糖转运蛋白(sucrose transporter,SUT)在植物的生长代谢中调控蔗糖的跨膜运输和分配,在韧皮部介导的源-库蔗糖运输和为库组织供应蔗糖的生理活动中起关键作用。本研究根据不同淀粉性状甘薯块根中差异表达的2个SUT基因转录本,进行cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)克隆,获得IbSUT62788和IbSUT81616的全长cDNA序列;通过系统发育分析明确其分类;通过在本氏烟草(Nicotiana benthamiana)中瞬时表达明确其亚细胞定位;通过酵母功能互补系统鉴定IbSUT62788和IbSUT81616是否具有吸收、转运蔗糖和己糖的能力。通过实时荧光定量PCR(real-time fluorescence quantitative polymerase chain reaction,RT-qPCR)分析IbSU62788和IbSUT81616在甘薯各器官中的表达特征;通过蘸花法得到外源表达IbSUT62788和IbSUT81616基因的拟南芥(Arabidopsis thaliana)植株,比较与野生型拟南芥的淀粉和糖含量的差异。结果表明,IbSUT62788和IbSUT81616分别编码505个和521个氨基酸的SUT蛋白,均属于SUT1亚家族。IbSUT62788和IbSUT81616均定位于细胞膜,在酵母系统中具有转运蔗糖、葡萄糖和果糖的能力。此外,IbSUT62788还具有转运甘露糖的能力。IbSUT62788在甘薯叶片、侧枝和茎中的表达量更高,IbSUT81616在侧枝、茎和块根中表达量更高。IbSUT62788和IbSUT81616在拟南芥中异源表达后,植株可以正常生长,但生物量增加。IbSUT62788的异源表达增加了拟南芥植株叶片可溶性糖含量、叶片大小和种子千粒重;IbSUT81616的异源表达增加了拟南芥植株叶片、根尖的淀粉积累量和种子千粒重,但减少了可溶性糖含量。本研究结果表明,IbSUT62788和IbSUT81616可能是调控甘薯蔗糖和糖含量性状的重要基因,在细胞膜上进行着蔗糖的跨膜运输、蔗糖进出库组织、韧皮部蔗糖的运输与卸载等生理功能,在拟南芥中异源表达造成的性状改变说明其在提高其他植物或作物产量中的应用潜力。本研究为揭示甘薯淀粉和糖代谢及重要品质性状形成机制提供了重要信息。  相似文献   

5.
蔗糖是韧皮部同化碳运输的主要形式,植物蔗糖转运体(SUT,Sucrose transporters)在参与植物碳素分配中起着重要的作用.编码SUT蛋白的基因在许多双子叶和单子叶植物中都已被分离.目前已经在水稻中鉴定出了5个蔗糖共运体(Sucrose symporter)基因家族成员.对这5个成员在水稻中的鉴定、克隆和表达分析,以及其蛋白结构、分类与进化进行了综述.这些信息可用于探索杂交稻高产的同化物分配和运输的分子原因.  相似文献   

6.
水稻蔗糖转运蛋白研究进展   总被引:2,自引:0,他引:2  
蔗糖转运蛋白是光合产物运输与分配调控网络中的重要节点,主要参与蔗糖从"源"到"库"的质外体运输,在蔗糖的感应、"源"器官装载、韧皮部长距离运输和"库"器官卸载中起重要作用。总结和分析了水稻蔗糖转运蛋白基因家族的组成、蛋白结构特点、表达与调控特性、生物学功能等方面的研究进展,在此基础上,提出了蔗糖转运蛋白基础理论和应用研究方面存在的不足及应予重视和加强的主要方向。  相似文献   

7.
蔗糖是高等植物体内碳水化合物长距离运输的主要甚至唯一的形式,蔗糖转运蛋白在蔗糖转运过程中起着极为重要的作用。该研究从菜用大豆闽豆6号中克隆到9个蔗糖转运蛋白基因,分别命名为Gm SUT-1~GmSUT-9,并对其进行生物信息学、系统发育和组织表达分析。结果表明,GmSUTs属于MFS超家族,根据SUT系统进化分析法将GmSUTs划分为SUT1、SUT2和SUT4三个亚族,其中GmSUT-1、GmSUT-2、GmSUT-4、GmSUT-5、GmSUT-6、GmSUT-7和GmSUT-8属于SUT1亚族, GmSUT-9属于SUT2亚族, GmSUT-3属于SUT4亚族。SUTs各亚族成员氨基酸序列的差异性可能导致它们在蔗糖的跨膜转运中扮演不同的角色,其表达模式和生理功能也不同。大豆SUT1亚族中7个基因总的表达趋势相似,花中表达量相对来说最高,而籽粒、叶片、茎和根等组织中表达量则相对较低; SUT2亚族中的GmSUT-9和SUT4亚族中的GmSUT-3在不同组织中的表达量相对来说都较低。该研究初步阐明了菜用大豆蔗糖转运蛋白家族基因的结构及组织表达特点,为进一步开展蔗糖转运蛋白基因调控菜用大豆籽粒发育中蔗糖的积累和分配的研究奠定了基础。  相似文献   

8.
植物光合作用的产物主要以蔗糖的形式在植物体内进行从源到库的运输。蔗糖转运蛋白是此过程的重要参与者,其表达和调控与植物中光合作用产物的分配紧密关联,从而调控着植物的生长发育、结果结实、抗逆抗病等性状。蔗糖转运蛋白的表达受到植物发育时期、外界环境条件及激素的影响。蔗糖转运蛋白的调控机制有转录因子的调节、基因内部序列调控、蛋白质的磷酸化、蛋白之间的相互作用及质子转运体的活性调节等。综述了国内外对蔗糖转运蛋白表达与活性的调控因素及机制等最新的研究内容,以期为从多角度上探索植物蔗糖转运蛋白的功能和调控机制提供相关研究信息和思路。  相似文献   

9.
植物体内糖分子的长距离运输及其分子机制   总被引:1,自引:0,他引:1  
张懿  张大兵  刘曼 《植物学报》2015,50(1):107-121
植物器官(如叶、叶鞘、绿色的茎等)可以通过光合作用将CO2合成为碳水化合物, 并经过长距离运输到达库组织(如新生组织、花粉、果实等)中进行贮存或利用。蔗糖是高等植物长距离运输碳水化合物的主要形式。蔗糖分子从源到库的运输包括源组织韧皮部的装载、维管束的运输和库组织韧皮部的卸载3个步骤。遗传学和分子生物学研究证明, 蔗糖转运蛋白、转化酶和单糖转运蛋白在糖分子的装载和卸载过程中发挥重要作用。该文综述了目前对光合产物运输过程及其调控分子机制的最新研究进展。  相似文献   

10.
植物蔗糖合成的分子机制   总被引:7,自引:0,他引:7  
高等植物中,光合同化产物主要是以蔗糖的形式从源向库运输的。近十几年来,随着生物技术的发展,许多与碳水同化产物代谢有关的基因已经被分离,同时多种植物遗传转化体系的建立使在植物中改变基因活性成为现实,对转基因植株的生理生化分析进一步增加了植物中对碳水同化产物合成、分配、运输以及利用等方面的认识。本文就CO2固定,同化产物分配,蔗糖合成三个方面介绍近年来利用基因工程对植物源活性调控及改善的研究进展。  相似文献   

11.
Sucrose is the principal form of photosynthesis products, and long-distance transport of sucrose requires sucrose transporters (SUTs) to perform loading and unloading functions. SUTs play an important role in plant growth, development and reproduction. In this study, five unique sucrose transporter (SbSUT) genes that contain full-length cDNA sequences were cloned from sweet sorghum, and these SbSUT genes were clustered into four different clades: SUT1, SUT3, SUT4 and SUT5. Heterologous expression of SbSUTs in yeast demonstrated that they were functional sucrose transporters. Tissue-specific expression profiles showed that sorghum SUT genes had different tissue-specific expression patterns, suggesting that sorghum SUT genes may play an important role in plant growth and developmental processes. After defoliation, expression patterns of SbSUT1, SbSUT2 and SbSUT4 were different in leaf sheaths, leaves and roots. Taken together, the results indicate that the above mentioned five unique sucrose transporter genes may play important roles in performing sucrose loading and unloading functions and that they exhibit different expression in response to leaf blade removal.  相似文献   

12.
A new subfamily of sucrose transporters from Arabidopsis (AtSUT4), tomato (LeSUT4), and potato (StSUT4) was isolated, demonstrating only 47% similarity to the previously characterized SUT1. SUT4 from two plant species conferred sucrose uptake activity when expressed in yeast. The K(m) for sucrose uptake by AtSUT4 of 11.6 +/- 0.6 mM was approximately 10-fold greater than for all other plant sucrose transporters characterized to date. An ortholog from potato had similar kinetic properties. Thus, SUT4 corresponds to the low-affinity/high-capacity saturable component of sucrose uptake found in leaves. In contrast to SUT1, SUT4 is expressed predominantly in minor veins in source leaves, where high-capacity sucrose transport is needed for phloem loading. In potato and tomato, SUT4 was immunolocalized specifically to enucleate sieve elements, indicating that like SUT1, macromolecular trafficking is required to transport the mRNA or the protein from companion cells through plasmodesmata into the sieve elements.  相似文献   

13.
In plants, the root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars toward these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, mononsaccharide tranporters, SUT/SUC, H+/sucrose transporters and SWEET, Sugar will eventually be exported transporters) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors.  相似文献   

14.
15.
The sucrose transporter gene family in rice   总被引:20,自引:0,他引:20  
  相似文献   

16.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

17.
Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.  相似文献   

18.
SUT2, a putative sucrose sensor in sieve elements   总被引:35,自引:0,他引:35  
In leaves, sucrose uptake kinetics involve high- and low-affinity components. A family of low- and high-affinity sucrose transporters (SUT) was identified. SUT1 serves as a high-affinity transporter essential for phloem loading and long-distance transport in solanaceous species. SUT4 is a low-affinity transporter with an expression pattern overlapping that of SUT1. Both SUT1 and SUT4 localize to enucleate sieve elements of tomato. New sucrose transporter-like proteins, named SUT2, from tomato and Arabidopsis contain extended cytoplasmic domains, thus structurally resembling the yeast sugar sensors SNF3 and RGT2. Features common to these sensors are low codon bias, environment of the start codon, low expression, and lack of detectable transport activity. In contrast to LeSUT1, which is induced during the sink-to-source transition of leaves, SUT2 is more highly expressed in sink than in source leaves and is inducible by sucrose. LeSUT2 protein colocalizes with the low- and high-affinity sucrose transporters in sieve elements of tomato petioles, indicating that multiple SUT mRNAs or proteins travel from companion cells to enucleate sieve elements. The SUT2 gene maps on chromosome V of potato and is linked to a major quantitative trait locus for tuber starch content and yield. Thus, the putative sugar sensor identified colocalizes with two other sucrose transporters, differs from them in kinetic properties, and potentially regulates the relative activity of low- and high-affinity sucrose transport into sieve elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号