首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group (n = 13) or strength group (n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group (P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/M(max)) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (H(max)/M(max)) ratio remained unchanged. Conversely, in the endurance group the V/M(max) ratio was not altered, whereas the H(max)/M(max) ratio increased by 30.8 ± 21.7% (P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.  相似文献   

2.
The effects of aging on motoneuron firing rates and muscle contractile properties were studied in tibialis anterior muscle by comparing results from six young (20.8 +/- 0.8 yr) and six old men (82.0 +/- 1.7 yr). For each subject, data were collected from repeated tests over a 2-wk period. Contractile tests included maximal voluntary contraction (MVC) with twitch interpolation and stimulated twitch contractions. The old men had 26% lower MVC torque (P < 0.01) than did the young men, but percent activation was not different (99.1 and 99.3%, respectively). Twitch contraction durations were 23% longer (P < 0.01) in the old compared with the young men. During a series of repeated brief steady-state contractions at 10, 25, 50, 75, and 100% MVC, motor unit firing rates were recorded. Results from approximately 950 motor unit trains in each subject group indicated that at all relative torque levels mean firing rates were 30-35% lower (P < 0.01) in the old subjects. Comparisons between young and old subjects' mean firing rates at each of 10%, 50%, and MVC torques and their corresponding mean twitch contraction duration yielded a range of moderate-to-high correlations (r = -0.67 to -0.84). That lower firing rates were matched to longer twitch contraction durations in the muscle of old men, and relatively higher firing rates were matched with shorter contraction times from the young men, indirectly supports the neuromuscular age-related remodeling principle.  相似文献   

3.
This study investigated the influence of tendon elongation (TE) on postcontraction doublet (PCD) torque in the assessment of activation in the plantar flexors of nine elderly men (EM, age 73.7 +/- 3.6 yr) and nine young men (YM, age 24.7 +/- 4.7 yr). Plantar flexion maximal voluntary contractions (MVC) and activation were assessed at ankle joint angles of -20 degrees (dorsiflexion), 0 degrees , and 20 degrees (plantar flexion). Across the ankle joint angles tested, compared with YM, the EM had a 36-49% lower plantar flexion MVC (P < 0.01), TE was greater by 25-31% (P < 0.01), and electromechanical delay was 65-108% greater (P < 0.01). Activation (PCD torque to interpolated doublet torque) was 15% lower in EM compared with YM at -20 degrees (P < 0.05), but no different at 0 and 20 degrees . In the EM, PCD torque relative to MVC torque was significantly lower at 20 degrees compared with 0 degrees (P < 0.05). Electromechanical delay was positively correlated with TE (R(2) = 0.489, P < 0.01). In conclusion, this investigation demonstrates that, although a negative association exists between TE and PCD torque, the consequence of a greater TE on the estimation of activation in EM is negligible. This is due to a greater influence of ankle joint angle on the occlusion of a superimposed doublet, which counteracts the lesser influence of joint angle on TE and PCD torque. However, a greater TE in EM was found to significantly increase electromechanical delay, which is expected to influence the time needed for postural readjustments.  相似文献   

4.
The purposes of this study were to determine 1) the relationships of self-reported function scores in patients with knee osteoarthritis (OA) to both maximal isometric torque and to isotonic power at a variety of loads, and 2) the degree to which muscle volume (MV) or voluntary activation (VA) are associated with torque and power measures in this population. Isometric maximal voluntary contraction (MVC) torque and isotonic power [performed at loads corresponding to 10, 20, 30, 40, and 50% MVC, and a minimal load ("Zero Load")] were measured in 40 participants with knee OA. Functional ability was measured with the Western Ontario and McMaster Osteoarthritis Index (WOMAC) function subscale. MV was determined with magnetic resonance imaging, and VA was measured with the interpolated twitch technique. In general, power measured at lower loads (Zero Load and 10-30% MVC, r(2) = 0.21-0.28, P < 0.05) predicted a greater proportion of the variance in function than MVC torque (r(2) = 0.18, P < 0.05), with power measured at Zero Load showing the strongest association (r(2) = 0. 28, P < 0.05). MV was the strongest predictor of MVC torque and power measures in multiple regression models (r(2) = 0.42-0.72). VA explained only 6% of the variance in MVC torque and was not significantly associated with power at any load (P > 0.05). Quadriceps MVC torque and power are associated with self-reported function in knee OA, but muscle power at lower loads is more predictive of function than MVC torque. The variance in MVC torque and power between participants is due predominantly to differences in MV and has little to do with deficits in VA.  相似文献   

5.
This study employed longitudinal measures of evoked spinal reflex responses (Hoffman reflex, V wave) to investigate changes in the activation of muscle and to determine if there are "linked" neural adaptations in the motor pathway following isometric resistance training. Twenty healthy, sedentary males were randomly assigned to either the trained (n = 10) or control group (n = 10). The training protocol consisted of 12 sessions of isometric resistance training of the plantar flexor muscles over a 4-wk period. All subjects were tested prior to and after the 4-wk period. To estimate changes in spinal excitability, soleus Hoffman (H) reflex and M wave recruitment curves were produced at rest and during submaximal contractions. Recruitment curves were analyzed using the slope method (Hslp/Mslp). Modulation of efferent neural drive was assessed through evoked V wave responses (V/Mmax) at 50, 75, and 100% maximal voluntary contraction (MVC). After 4 weeks, MVC torque increased 20.0 +/- 13.9% (mean +/- SD) in the trained group. The increase in MVC was accompanied by significant increases in the rate of torque development (42.5 +/- 13.3%), the soleus surface electromyogram (60.7 +/- 30.8%), voluntary activation (2.8 +/- 0.1%), and the rate of activation (48.7 +/- 24.3%). Hslp/Mslp was not altered by training; however, V/Mmax increased 57.3 +/- 34.2% during MVC. These results suggest that increases in MVC observed in the first few days of isometric resistance training can be accounted for by an increase in the rate of activation at the onset of muscle contraction. Augmentation of muscle activation may be due to increased volitional drive from supraspinal centers.  相似文献   

6.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

7.
This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.  相似文献   

8.
The influence of repetitive dynamic fatiguing contractions on the neuromuscular characteristics of the human triceps surae was investigated in 10 subjects. The load was 50% of the torque produced during a maximal voluntary contraction, and the exercise ended when the ankle range of motion declined to 50% of control. The maximal torque of the triceps surae and the electromyographic (EMG) activities of the soleus and medial gastrocnemius were studied in response to voluntary and electrically induced contractions before and after the fatiguing task and after 5 min of recovery. Reflex activities were also tested by recording the Hoffmann reflex (H reflex) and tendon reflex (T reflex) in the soleus muscle. The results indicated that whereas the maximal voluntary contraction torque, tested in isometric conditions, was reduced to a greater extent (P < 0.05) at 20 degrees of plantar flexion (-33%) compared with the neutral position (-23%) of the ankle joint, the EMG activity of both muscles was not significantly reduced after fatigue. Muscle activation, tested by the interpolated-twitch method or the ratio of the voluntary EMG to the amplitude of the muscle action potential (M-wave), as well as the neuromuscular transmission and sarcolemmal excitation, tested by the M-wave amplitude, did not change significantly after the fatiguing exercise. Although the H and T reflexes declined slightly (10-13%; P < 0.05) after fatigue, these adjustments did not appear to have a direct deleterious effect on muscle activation. In contrast, alterations in the mechanical twitch time course and postactivation potentiation indicated that intracellular Ca(2+)-controlled excitation-contraction coupling processes most likely played a major role in the force decrease after dynamic fatiguing contractions performed for short duration.  相似文献   

9.
The Hoffmann (H) reflex and motor (M) response were studied in soleus and gastrocnemius during voluntary contraction in eight male volunteers. Aims: To determine if the strength of spindle input to the muscles is the same. To assess if the M response size changes during contraction. Results: The size of the maximum M response (M max) changed during contraction in each subject. Hence, all H reflex measurements were normalized to the M max at each level of contraction for each subject. The largest H/M max was bigger in soleus than gastrocnemius at every contraction level. The overall largest H/M max for soleus (97%) and gastrocnemius (55%) were achieved at 40 and 100% maximum voluntary contraction (MVC), respectively. Conclusion: Soleus receives greater spindle feedback than the gastrocnemius both at rest and during voluntary contraction.  相似文献   

10.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

11.
In small mammals, muscles with shorter twitch contraction times and a predominance of fast-twitch, type II fibers exhibit greater posttetanic twitch force potentiation than muscles with longer twitch contraction times and a predominance of slow-twitch, type I fibers. In humans, the correlation between potentiation and fiber-type distribution has not been found consistently. In the present study, postactivation potentiation (PAP) was induced in the knee extensors of 20 young men by a 10-s maximum voluntary isometric contraction (MVC). Maximal twitch contractions of the knee extensors were evoked before and after the MVC. A negative correlation (r = -0. 73, P < 0.001) was found between PAP and pre-MVC twitch time to peak torque (TPT). The four men with the highest (HPAP, 104 +/- 11%) and lowest (LPAP, 43 +/- 7%) PAP values (P < 0.0001) underwent needle biopsies of vastus lateralis. HPAP had a greater percentage of type II fibers (72 +/- 9 vs. 39 +/- 7%, P < 0.001) and shorter pre-MVC twitch TPT (61 +/- 12 vs. 86 +/- 7 ms, P < 0.05) than LPAP. These data indicate that, similar to the muscles of small mammals, human muscles with shorter twitch contraction times and a higher percentage of type II fibers exhibit greater PAP.  相似文献   

12.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

13.
14.
The purpose was to compare the time to task failure for a sustained isometric contraction performed at a submaximal intensity with the elbow flexor muscles by young and old men who were matched for strength. Eight young men (18-31 yr) and eight old men (67-76 yr) sustained an isometric contraction at 20% of maximal voluntary contraction (MVC) torque until the target torque could no longer be achieved for at least 5 s. The maximal torque exerted at the wrist was similar for the young and old men before the fatiguing task (65.9 +/- 8.0 vs. 65.4 +/- 8.7 N x m; P > 0.05), and they experienced similar reductions in MVC torque after the fatiguing contraction (31.4 +/- 10.6%; P < 0.05). The time to task failure was longer for the old men (22.6 +/- 7.4 min) compared with the strength-matched young men (13.0 +/- 5.2 min; P < 0.05), despite each group sustaining a similar torque during the fatiguing contraction (P > 0.05). The increases in torque fluctuations, electromyographic (EMG) bursting activity, and heart rate were greater for young men compared with the old men, and they were less at task failure for the old men (P < 0.05). Mean arterial pressure increased at a similar rate for both groups of men (P > 0.05), whereas the averaged EMG activity and rating of perceived exertion reached similar values at task failure for the young and old men (P > 0.05). These findings indicate that the longer time to task failure for the old men when performing the submaximal contraction was not due the absolute target torque exerted during the contraction.  相似文献   

15.
The Hoffmann (H) reflex and motor (M) response were studied in soleus and gastrocnemius during voluntary contraction in eight male volunteers. AIMS: To determine if the strength of spindle input to the muscles is the same. To assess if the M response size changes during contraction. RESULTS: The size of the maximum M response (M max) changed during contraction in each subject. Hence, all H reflex measurements were normalized to the M max at each level of contraction for each subject. The largest H/M max was bigger in soleus than gastrocnemius at every contraction level. The overall largest H/M max for soleus (97%) and gastrocnemius (55%) were achieved at 40 and 100% maximum voluntary contraction (MVC), respectively. CONCLUSION: Soleus receives greater spindle feedback than the gastrocnemius both at rest and during voluntary contraction.  相似文献   

16.
The aim of the study was to examine alterations in contractile and neural processes in response to an isometric fatiguing contraction performed with EMG feedback (constant-EMG task) when exerting 40% of maximal voluntary contraction (MVC) torque with the knee extensor muscles. A task with a torque feedback (constant-torque task) set at a similar intensity served as a reference task. Thirteen men (26+/-5 yr) attended two experimental sessions that were randomized across days. Endurance time was greater for the constant-EMG task compared with the constant-torque task (230+/-156 s vs. 101+/-32s, P<0.01). Average EMG activity for the knee extensor muscles increased from 33.5+/-4.5% to 54.7+/-21.7% MVC EMG during the constant-torque task (P<0.001), whereas the torque exerted during the constant-EMG task decreased from 42.8+/-3.0% to 17.9+/-5.6% MVC torque (P<0.001). Comparable reductions in knee extensors MVC (-15.7+/-8.7% for the constant-torque task vs. -17.5+/-9.8% for the constant-EMG task, P>0.05) and voluntary activation level were observed at exhaustion. In contrast, excitation-contraction coupling process, assessed with an electrically evoked twitch and doublet, was altered significantly more at the end of the constant-EMG task despite the absence of M-wave changes for both tasks. Present results suggest that prolonged contractions using EMG biofeedback should be used cautiously in rehabilitation programs.  相似文献   

17.
To elucidate the changes in neuro-muscular function during strength training and detraining, five male subjects underwent progressive isotonic strength training of their calf muscles three times a week for 8 weeks with additional detraining for the same periods. Electrically evoked twitch contractions were induced in the triceps surae muscles of each subject every 4 weeks during the training and detraining periods. At the same time, maximal voluntary isometric contractions (MVC) and the maximal girth of the calf (MGC) were measured. During the training period, MVC increased significantly from 98.4 to 129.6 Nm (31.7%, P less than 0.01) for the first 4 weeks of training but MGC showed little increase. Neither of the changes correlated with each other. Twitch contraction parameters, i.e. maximal twitch torque (Pt), maximal rate of torque development (max dT/dt) and rate of relaxation (relax dT/dt) showed no statistical change. During detraining, on the contrary, a large and significant increase (22.5%, P less than 0.01) was observed in max dT/dt without any changes in Pt and relax dT/dt. The MVC/Pt showed both significant increases during training and decreases during detraining. Our data suggest that short term strength training as employed in the present study does not induce changes in the contractile properties of the muscle during training, but may significantly affect the rate of force development during the subsequent detraining period, indicating the possible existence of complex post-training muscle adaptation.  相似文献   

18.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

19.
Nine healthy men (22-45 yr) completed 100 repetitive maximal isometric contractions of the ankle plantar flexor muscles in two knee positions of full extension (K0) and flexion at 90 degrees (K90), positions that varied the contribution of the gastrocnemii. Electromyographic activity was recorded from the medial and lateral gastrocnemii and soleus muscles by using surface electrodes. Plantar flexion torque in K0 was greater and decreased more rapidly than in K90. The electromyographic amplitude decreased over time, and there were no significant differences between muscles and knee joint positions. The level of voluntary effort, assessed by a supramaximal electrical stimulation during every 10th contraction, decreased from 96 to 70% (P < 0.05) with no difference between K0 and K90. It was suggested that a decrease in plantar flexion torque was attributable to both central and peripheral fatigue and that greater fatigability in K0 than in K90 would result from a greater contribution and hence more pronounced fatigue of the gastrocnemius muscle. Further support for this possibility was provided from changes in twitch torque.  相似文献   

20.
Eight men (20-23 years) weight trained 3 days.week-1 for 19 weeks. Training sessions consisted of six sets of a leg press exercise (simultaneous hip and knee extension and ankle plantar flexion) on a weight machine, the last three sets with the heaviest weight that could be used for 7-20 repetitions. In comparison to a control group (n = 6) only the trained group increased (P less than 0.01) weight lifting performance (heaviest weight lifted for one repetition, 29%), and left and right knee extensor cross-sectional area (CAT scanning and computerized planimetry, 11%, P less than 0.05). In contrast, training caused no increase in maximal voluntary isometric knee extension strength, electrically evoked knee extensor peak twitch torque, and knee extensor motor unit activation (interpolated twitch method). These data indicate that a moderate but significant amount of hypertrophy induced by weight training does not necessarily increase performance in an isometric strength task different from the training task but involving the same muscle group. The failure of evoked twitch torque to increase despite hypertrophy may further indicate that moderate hypertrophy in the early stage of strength training may not necessarily cause an increase in intrinsic muscle force generating capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号