首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jack pine budworm (Choristoneura pinus pinus Free.) (Lepidoptera: Tortricidae) is a native insect that periodically defoliates areas of jack pine (Pinus banksiana Lamb.) in the subboreal forests of North America east of the Rocky Mountains. Outbreaks of jack pine budworm generally occur at 6- to 12-year intervals and collapse after 2–4 years. Periodicity of outbreaks varies and is associated with site-related factors. Survival of early-instar larvae during spring dispersal is tied to the abundance of pollen cones (microsporangiate strobili), which provide a refuge for larvae until current-year needles expand. Jack pine trees that have been heavily defoliated produce few pollen cones in the following year, often resulting in high mortality of early-stage larvae. A diverse guild of generalist parasitoids attack jack pine budworm, but only a few species account for most mortality in any area. Collapsing jack pine budworm populations are characterized by sharp declines in early instar survival, coupled with an increased rate of parasitism in the late larval and pupal stages. The reciprocal interaction between heavy defoliation and low pollen cone production, and increased parasitism of late-stage larvae or pupae, are consistent with second-order density dependence factors identified in analysis of a long-term population data set. Since the 1950s, several jack pine budworm outbreaks have been roughly synchronous over a large geographic area, suggesting that Moran effect processes, as well as moth dispersal or other factors, may be involved in jack pine budworm dynamics. Although the short duration of outbreaks enables most trees to recover, over time dead trees and top-killed trees accumulate in jack pine stands. Jack pine is well adapted to fire and when fires ignite, the accumulation of dead trees and woody debris often leads to intense wildfires followed by prolific regeneration. The three-way interaction of jack pine, jack pine budworm, and fire ultimately serves to maintain vigorous stands and ensures continued hosts for jack pine budworm. Received: October 1, 1999 / Accepted: September 22, 2000  相似文献   

2.
Abstract. 1. Survival of newly emerged jack pine budworm Choristoneura pinus pinus is related to the density of available pollen cones (microsporangiate strobili) produced by its host tree, jack pine Pinus banksiana. 2. A 7‐year time series of observations from a plot network in Ontario, Canada, compared the propensity of jack pine to produce pollen cones, τ, on trees that were either defoliated or undisturbed by the jack pine budworm. 3. Non‐defoliated jack pine trees have a high propensity to produce pollen cones. More than one‐third of these trees produced pollen cones in every year of the series. Propensity varied significantly among plots and trees. Temporal patterns in propensity were also highly variable but within a plot propensity was often autocorrelated in time. 4. Defoliation by the jack pine budworm was associated with forest plots composed of the oldest and the largest trees and with the fewest trees per hectare. Within a plot, outbreaks lasted 3 or 4 years although individual trees were only defoliated in 1 or 2 years. 5. The propensity to produce pollen cones in jack pine was reduced in the years after defoliation. The most pronounced reductions in propensity occurred where defoliation was most severe. 6. The reduction in propensity to produce pollen cones resulting from previous defoliation, coupled with the dependence of jack pine budworm survival on the availability of pollen cones, induces a lagged, negative feedback between the density of the consumer and that of its resource. 7. The lagged, density‐dependent relationship between jack pine budworm and its jack pine host contributes to oscillatory dynamics of the jack pine budworm. Comparison of the outbreak behaviour of jack pine budworm with that of the closely related eastern spruce budworm C. fumiferana suggests that differences in the strength of the host‐plant interaction may account for differences in the relative frequency of outbreaks in the respective systems.  相似文献   

3.
We report data collected over the entire course of an outbreak of jack pine budworm, Choristoneura pinus pinus Freeman (Lepidoptera: Tortricidae), between 1984 and 1988 at 12 plots in Manitoba. The positive relationship between the level of defoliation, used as a proxy for population density, and the abundance of eggs suggests local reproduction by females. The density of pollen cones apparently reduced larval fitness in 1986, when flowers were least abundant, but had limited impact in other years when pollen cones were abundant; this suggests that the relative abundance of pollen cones is more likely to influence the termination of an outbreak than its onset. Considering the conditions that prevail at the onset of the outbreak (low defoliation combined with a high abundance of eggs), a predictive tool may be developed to anticipate outbreaks of jack pine budworm based on environmental conditions that are conducive to high survival and/or fecundity of females.  相似文献   

4.
5.
Abstract.
  • 1 Newly-emerged, second-instar jack pine budworm (Choristoneura pinus Freeman) establish spring feeding sites preferentially in the pollen cones of their host tree, Pinus banksiana Lamb.
  • 2 Laboratory studies showed that the rate of establishment and survival of jack pine budworm on pollen cones was high throughout the entire spring emergence period of the insect.
  • 3 In contrast, the rate of establishment and survival of jack pine budworm on vegetative buds was very poor early in the spring. Vegetative buds were only acceptable as feeding sites to the jack pine budworm for a relatively brief period in late spring.
  • 4 Field studies showed that the change in population density of jack pine budworm during the spring emergence stage, as expressed by k-values, was a function of the abundance of pollen cones in the stand. Population reduction was greatest in those stands with the fewest pollen cones.
  • 5 Direct measurement of spring dispersal by jack pine budworm showed that dispersal and consequent losses to the budworm population were greatest in stands with the fewest pollen cones.
  • 6 We conclude that changes in the density of jack pine budworm are strongly influenced by production of pollen cones in the host stand. Because pollen cone production is related to previous years of defoliation by the jack pine budworm, we propose that pollen cones act as a density-dependent factor governing the density of early-stage jack pine budworm.
  • 7 The resulting dynamics are compared to those of other budworm species and used to explain observed regional and temporal patterns of jack pine budworm outbreaks.
  相似文献   

6.
Bioassay studies were conducted to investigate the influence of Dimilin (diflubenzuron), a chitinsynthetase inhibitor used for insecticidal control of the gypsy moth, Lymantria dispar, on the development and viability of a microsporidian pathogen of L. dispar. Before or after an infection with a Nosema species, L. dispar larvae were fed Dimilin in sublethal dosages. Dimilin fed to L. dispar larvae at 0.65 ng/cm2 diet surface resulted in a total larval mortality of 53%. Although the microsporidian infection alone did not cause high mortality rates (9%), mortality increased to 96% when L. dispar larvae were inoculated with both Dimilin and Nosema spores. When Dimilin was fed to the larvae 24 h before or 6 days after inoculation with the microsporidium, the number of mature spores produced was significantly reduced. When Dimilin was fed to the larvae 24 h after microsporidian inoculation, the number of spores produced was not significantly reduced. Spores that were produced in larvae after Dimilin had been ingested with the diet were less infectious than spores produced in control larvae; the experimental infection rate decreased from 94% when spores obtained from control larvae were used, to 48 or 10% when spores obtained from larvae fed Dimilin 24 h or 6 days after Nosema inoculation, respectively, were used. Mature microsporidian spores washed in Dimilin solution prior to oral inoculation, however, were as infectious as spores stored in liquid nitrogen. We have shown that Dimilin interferes with the establishment of the parasite in its host. In addition, when Nosema sp. succeeds in infecting the L. dispar host despite treatment with Dimilin, the microsporidium does not develop optimally and spore production is reduced.  相似文献   

7.
1. Coniferous trees deploy a combination of constitutive (pre‐existing) and induced (post‐invasion), structural and biochemical defences against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant‐mediated interactions between different species of attacking organisms. 2. Current range and host expansion of the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) from lodgepole pine‐dominated forests to the jack pine‐dominated boreal forests provides a unique opportunity to investigate whether the colonisation of jack pine (Pinus banksiana Lamb.) by MPB will be affected by induced responses of jack pine to a native herbaceous insect species: the jack pine budworm (Choristoneura pinus pinus Freeman; JPBW). 3. We simulated MPB attacks with one of its fungal associates, Grosmannia clavigera Robinson‐Jeffrey & Davidson, and tested induction of either herbivory by JPBW or inoculation with the fungus followed by a challenge treatment with the other organism on jack pine seedlings and measured and compared monoterpene responses in needles. 4. There was clear evidence of an increase in jack pine resistance to G. clavigera with previous herbivory, indicated by smaller lesions in response to fungal inoculations. In contrast, although needle monoterpenes greatly increased after G. clavigera inoculation and continued to increase during the herbivory challenge, JPBW growth was not affected, but JPBW increased the feeding rate to possibly compensate for altered host quality. 5. Jack pine responses varied greatly and depended on whether seedlings were treated with single or multiple organisms, and their order of damage.  相似文献   

8.
Laboratory rearing of spruce budworm, Choristoneura fumiferana, in conjunction with field rearing indicated that the feeding behaviour of the larvae, which is affected by the insect population density, significantly influenced the impact of balsam fir, Abies balsamea, staminate flowering on spruce budworm biology. At low budworm density, the production of pollen in the midcrown of host trees reduced the insect development time by 5 days without affecting pupal weight, fecundity and survival. However, at high budworm density, the small amount of current-year foliage produced by flowering branches forced old larvae (sixth instar) either to feed on 1-year-old foliage (backfeeding) or to move from the midcrown to the lower crown section where staminate flowers are absent and more current-year foliage is available. When old larvae fed on old foliage, they exhibited reduced pupal weight and fecundity without losing the advange in development time that they obtained from feeding on pollen during their early stages of development. On the other hand, when old larvae moved to the lower crown section, they avoided the negative effects of backfeeding but lost the advantage in development time that was gained from feeding on pollen. Results from this study indicated that the production of staminate flowers by balsam fir trees could have opposite effects on spruce budworm population dynamics depending upon the insect population density when flowering occurs.  相似文献   

9.
The influence of landscape patterns on ecological processes is generally acknowledged, but often difficult to quantify. The objective of our study was to quantify the relation of jack pine budworm ( Choristoneura pinus pinus ) population levels to both the abundance of jack pine ( Pinus banksiana ) and of jack pine stand edges in the landscape. The 450 000 ha Pine Barrens region, located in northwestern Wisconsin, USA, experienced a severe jack pine budworm outbreak from 1990 to 1995. We calculated landscape indices on a landcover map derived from Landsat TM satellite imagery. Landscape indices were calculated on circular buffers (0.5, 0.75, 1, 1.5, and 2.5 km radius) centered on 143 budworm population sampling points for which annual budworm counts were available. Edge density was normalized for the proportion of jack pine in the landscape using random maps as a standard. Correlations between landscape patterns and budworm populations varied over time: proportion of jack pine showed strongest positive correlation with budworm population levels up to the peak of the outbreak (1993). Edge density exhibited positive correlation up to the peak of the outbreak, but negative correlation in the subsequent years as the outbreak declined. This may suggest that pollen-bearing male cones, which are more abundant along edges, support higher budworm populations in the initial phase of the outbreak, but stronger predation on budworm along edges subsequently reduces populations. We provide insight into previously inconclusive results on the relation of jack pine budworm population density to jack pine stand edges. The effects of landscape patterns, such as edge density, may vary not only in magnitude, but also in direction, being positive and negative during different phases of an insect outbreak. Therefore, caution should be taken in relating landscape patterns to process at either a single scale or point in time.  相似文献   

10.
We assessed the potential of annual buckwheat, Fagopyrum esculentum Moench, to lead to improved parasitism of lepidopteran cabbage pests over four years. Pest, parasitism, and hyperparasitism rates were monitored in replicated cabbage plots (12 × 20 m) with or without 3 m wide buckwheat borders from 2000 to 2003. Floral borders did not significantly increase egg, larval, or pupal densities of cabbage looper, Trichoplusia ni (Hübner), imported cabbageworm, Pieris rapae (L.), or diamondback moth, Plutella xylostella (L.). Buckwheat increased parasitism rates by Voria ruralis (Fallen) on T. ni larvae and Cotesia rubecula (Marshall) on P. rapaelarvae over four years. Parasitism by Diadegma insulare (Cresson) on P. xylostella larvae was higher in buckwheat than control plots in the first year, and parasitism by Euplectrus plathypenae (Howard) on T. ni larvae was lower in buckwheat than control plots in the second year. The hyperparasitoid Conura side (Walker) attacked D. insulare all four years, but buckwheat did not affect hyperparasitism rates. The effect of spatial scale on pest densities and parasitism in 2001 was evaluated by comparing plots separated at least 67 m (nearby) versus 800 m apart (isolated). T. ni pupae and P. rapae eggs and pupae were more abundant in plots in closer proximity, whereas P. xylostella densities did not vary by the spatial separation of plots. Tachinids and Pteromalus puparum (L.) attacked more P. rapae in nearby plots. E. plathypenae responded to the treatment × scale interaction, parasitizing more in control than buckwheat when plots were isolated but not when plots were nearby.  相似文献   

11.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

12.
Nosema lymantriae is a microsporidian pathogen of the gypsy moth, Lymantria dispar that has been documented to be at least partially responsible for the collapse of L. dispar outbreak populations in Europe. To quantify horizontal transmission of this pathogen under field conditions we performed caged-tree experiments that varied (1) the density of the pathogen through the introduction of laboratory-infected larvae, and (2) the total time that susceptible (test) larvae were exposed to these infected larvae. The time frame of the experiments extended from the early phase of colonization of the target tissues by the microsporidium to the onset of pathogen-induced mortality or pupation of test larvae. Upon termination of each experiment, the prevalence of infection in test larvae was evaluated. In the experiments performed over a range of pathogen densities, infection of test larvae increased with increasing density of inoculated larvae, from 14.2 ± 3.5% at density of 10 inoculated per 100 larvae to 36.7 ± 5.7% at 30 inoculated per 100 larvae. At higher densities, percent infection in test larvae appeared to level off (35.7 ± 5.5% at 50 inoculated per 100 larvae). When larval exposure to the pathogen was varied, transmission of N. lymantriae did not occur within the first 15 d post-inoculation (dpi) (11 d post-exposure of test larvae to inoculated larvae). We found the first infected test larvae in samples taken 20 dpi (16 d post-exposure). Transmission increased over time; in the cages sampled 25 dpi (21 d post-exposure), Nosema prevalence in test larvae ranged from 20.6% to 39.2%.  相似文献   

13.
We have studied Picea glauca (white spruce) endophyte colonization and its affect on the growth of Choristoneura fumiferana (spruce budworm). Here we examine the spread and persistence of a rugulosin-producing endophyte and rugulosin in needles from trees maintained in the nursery, as well as in trees planted in a test field site. Additionally, we report toxicity of rugulosin against three P. glauca needle herbivores: C. fumiferana, Lambdina fiscellaria (hemlock looper) and Zeiraphera canadensis (spruce budmoth). Reduction in body weight for both the C. fumiferana and L. fiscellaria were observed at 25 and 50 μm, respectively, and head capsules were reduced at 100 and 150 μm. Z. canadensis larvae did not perform as well in tests due to an Aspergillus fumigatus infection, but were shown to be lighter when tested with 100 and 150 μm compared with controls. The endophyte and its toxin were shown to spread throughout the nursery-grown seedlings. After 3.5 and 4.5 y post-inoculation (one and two years in the test site), the inoculated endophyte and its toxin had remained present with an average rugulosin concentration of 1 μg g−1.  相似文献   

14.
We used tree-ring reconstruction data to study changes in the spatial pattern of live and dead trees at an annual resolution over a 50-year period at four unmanaged, even-aged fire origin jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. Previous studies of the spatial pattern in P. banksiana have either looked at only a snapshot from a survey done at a single point in time, or repeated measurements of permanent plots taken at 10-year intervals. With annual data, we could examine detailed changes in spatial patterns and relate these to events during stand development and external disturbances. Trees were initially clustered at all sites, but at different distances at each site, most likely because of variability in seedbed distribution at stand initiation. Clustering disappeared over time at all sites, and at a similar mean tree spacing at each site. However, significant regularity only appeared sporadically at one site, indicating that competition with neighbours was not the only factor influencing changes in spatial pattern. At two of the four sites, clustering disappeared suddenly at the same time that mortality rate reached a peak, in one case also coinciding with a jack pine budworm (Choristoneura pinus pinus Freeman) defoliation event. Dead trees were also initially more clustered than the distribution of all trees, but at different distances than the clustering of live trees. This also disappeared over time so that dead trees were eventually a random sample from the distribution of all trees. After the peak of mortality had passed, factors other than competition were determining the dynamics of these forests.  相似文献   

15.
Radial increment cores from Douglas-fir (Pseudotsuga menziesii) and blue spruce (Picea pungens), defoliated by western spruce budworm (Choristoneura occidentalis), were analyzed by means of dendrochronological methods and compared with cores from undefoliated ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta) growing on the same sites in the Front Range, Colorado. Extensive deforestation during the gold and silver booms in the second part of the nineteenth century led to dense and almost pure stands of shadetolerant budworm host species. By using the skeleton plot method, the number of trees with clear growth reductions is obtained, thus representing an exact record of forest insect attacks. The analysis of abrupt growth reductions revealed at least nine outbreaks of western spruce budworm between 1720 and 1986, the majority occurring in the nineteenth century. The outbreaks were graphically compared with periods of attack in New Mexico and Colorado which were detected by other scientists employing tree-ring measurement techniques. No increase in the frequency of severe outbreaks during the twentieth century was observed, yet there is some evidence that the most recent outbreak might be the most severe ever recorded. Open Douglas-fir stands on higher sites were more susceptible to heavy budworm attack than dense stands on lower sites. Blue spruce was less frequently and less severely attacked than Douglas-fir. The spatial pattern of historical outbreaks generally was very patchy.  相似文献   

16.
Predator foraging behaviour affects the outcome of enemy–enemy interactions. Using a combination of fieldwork and laboratory experiments, we show that intraguild predation may be important in the field distribution of generalist predators that share a common prey: the eggs (and larvae) of the leaf beetle Phratora vulgatissima, a major insect pest in coppicing willow plantations. We focused on a species from the hoverfly genus Parasyrphus (Syrphidae), which may exhibit large temporal and spatial variation in density. Predator and prey densities were quantified in 40 field plots in willow plantations. The likelihood of finding hoverfly eggs declined with increasing densities of two predatory mirids, Orthotylus marginalis and Closterotomus fulvomaculatus, which exhibit less mobile behaviour similar to that of hoverfly larvae. The density of a more mobile predatory bug species, the anthocorid Anthocoris nemorum, was not associated with hoverfly occurrence. These results corroborate the hypothesis that less mobile predators should be stronger intraguild predators than mobilepredators. Further partial support for this hypothesis was obtained in the laboratory study where individual predators were presented with clutches of P. vulgatissima eggs containing one hoverfly egg: the less mobile C. fulvomaculatus and O. marginalis tended to consume the hoverfly egg more readily than the more mobile A. nemorum. However, most individuals of all three bug species consumed the egg of the potential competitor – the syrphid – within 24 h. The field study also showed that hoverfly occurrence was positively associated with the density of their prey and with the presence of nearby forests. We conclude that intraguild predation, abundance of prey and the surrounding habitat affect the distribution of hoverflies in this system and should be considered when developing biological control methods.  相似文献   

17.
Entomopathogenic nematodes of the family Steinernematidae and their mutualistic bacteria (Xenorhabdus spp.) are lethal endoparasites of insects. We hypothesized that growth of the nematode’s mutualistic bacteria in the insect host may contribute to the production of cues used by the infective juveniles (IJs) in responding to potential hosts for infection. Specifically, we tested if patterns of bacterial growth could explain differences in CO2 production over the course of host infection. Growth of Xenorhabdus cabanillasii isolated from Steinernema riobrave exhibited the characteristic exponential and stationary growth phases. Other non-nematode symbiotic bacteria were also found in infected hosts and exhibited similar growth patterns to X. cabanillasii. Galleria mellonella larvae infected with S. riobrave produced two distinct peaks of CO2 occurring at 25.6–36 h and 105–161 h post-infection, whereas larvae injected with X. cabanillasii alone showed only one peak of CO2, occurring at 22.8–36.2 h post-injection. Tenebrio molitor larvae infected with S. riobrave or injected with bacteria alone exhibited only one peak of CO2 production, which occurred later during S. riobrave infection (41.4–64.4 h post-infection compared to 20.4–35.9 h post-injection). These results indicate a relationship between bacterial growth and the first peak of CO2 in both host species, but not for the second peak exhibited in G. mellonella.  相似文献   

18.
Summary Suitability of young jack pine as a host for jack pine budworm was examined on similarly-aged trees growing on two areas previously burned in wildfires and on two previously clearcut areas in northwest Wisconsin. Nitrogen, monoterpenes, and moisture levels of foliage, and xylem water potential were measured and related to larval survival and pupal weight of caged jack pine budworm larvae. Nitrogen, monoterpenes, needle weight, and needle moisture were higher in trees growing on clearcut sites than on burned area trees. Surival of budworms to early and late instar, pupation, and adult eclosion was greater for larvae caged on clearcut-area trees than on burned-area trees. Female pupal weight differed between older (ca 10 years old) and younger (ca 8 years old) trees, but not between clearcut and burned areas. Mean female pupal weight was greatest on lownitrogen trees, where larval survival was lowest. Foliar nitrogen was consistently included as a significant predictor in budworm survival regressions. Regressions indicated larval survival and pupal weight may be associated with different tree- and foliage-related traits. Results suggest long-lasting effects of previous forest disturbance may subsequently affect herbivorous insects such as jack pine budworm.  相似文献   

19.
Laboratory experiments compared the nutritive value of various pollen sources for the development of Coleomegilla maculata DeGeer under conditions of continuous water availability and simulated drought. When water was continuously available, larval survival was not different from 100% on diets of frozen eggs of Ephestia kuehniella Zeller, corn pollen, sorghum pollen, or pulverized bee pollen, whereas survival of larvae was significantly reduced on the latter three diets in the simulated drought treatment. Pollen of cultivated sunflower, Helianthus annus L., proved fatal to both larvae and adults; its surface structure caused clumping and accumulation on the insect cuticle that led to death from exhaustion/desiccation in petri dishes. The Ephestia egg diet yielded shorter developmental times and heavier adult weights than any pollen diet in both treatments. The drought treatment increased developmental time on all diets with a significant treatment–diet interaction. Drought reduced the adult weight of females on the sorghum pollen diet, and that of both sexes on the bee pollen diet, again with a significant treatment–diet interaction. Initial water content was highest in corn pollen (36.8%), followed by Ephestia eggs (29.2%), sorghum pollen (25.3%), sunflower pollen (8.7%), and bee pollen (4.6%), but did not appear correlated with C. maculata larval survival on pollen sources under drought conditions. Reproductive adult females that received corn or sorghum pollen as a supplement to Ephestia eggs did not differ in fecundity or fertility from those fed only Ephestia eggs.  相似文献   

20.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号