首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The administration of N6,O2-dibutyryl cyclic AMP and theophylline to adrenalectomized rats results in an increase in the amount of functional mRNA coding for tyrosine aminotransferase that can be isolated from liver. The induction of this specific mRNA, as quantitated in a mRNA-dependent reticulocyte lysate system, and using poly(A)+ mRNA extracted from total tissue and polysomes, is very rapid. Within an hour after the intraperitoneal injection of the cyclic AMP derivative there is a 5- to 7-fold elevation of functional mRNA coding for tyrosine aminotransferase (mRNATAT), and by 3 h this has returned to basal levels. In contrast, the 4- to 5-fold induction of tyrosine aminotransferase catalytic activity is maximal at 2 h and is still significantly greater than the basal level at 5 h. In the basal state, tyrosine aminotransferase mRNA codes for 0.019 +/- 0.003% of the protein synthesized in the in vitro system, whereas after cyclic nucleotide treatment this value 0.115 +/- 0.015%, hence the increase in mRNATAT activity is relatively specific. Cordycepin, at a concentration which prevents the accumulation in cytoplasm of poly(A)+ mRNA, completely blocks the increase in both the catalytic and mRNA activity of this enzyme. The marked increase in functional mRNA, the requirement for continued synthesis of poly(A)+ RNA, and the rapid induction and deinduction suggest that the cyclic nucleotide is enhancing specific mRNA synthesis and/or, processing, however an effect on mRNA degradation cannot be excluded.  相似文献   

3.
4.
5.
As a model cell culture system for studying polyoma-mediated control of host gene expression, we isolated methotrexate-resistant 3T6 cells in which one of the virus-induced enzymes, dihydrofolate reductase, is a major cellular protein. In highly methotrexate-resistant cell lines dihydrofolate reductase synthesis accounts for over 10% that of soluble portein, corresponding to an increase of approximately 100-fold over the level in parental cells. This increase in dihydrofolate reductase synthesis is due to a corresponding increase in the abundance of dihydrofolate reductase mRNA and gene sequences. We have used these cells to show that infection with polyoma virus results in a 4- to 5-fold increase in the relative rate of dihydrofolate reductase synthesis and a corresponding increase in dihydrofolate reductase mRNA abundance. The increase in dihydrofolate reductase synthesis begins 15 to 20 h after infection and continues to increase until cell lysis. These observations represent the first direct evidence that viral infection of eukaryotic cells results in the increased synthesis of a specific cellular enzyme and an increase in the abundance of a specific cellular mRNA. In order to gain additional insight into the control of dihydrofolate reductase synthesis we examined other parameters affecting dihydrofolate reductase synthesis. We found that the addition of fresh serum to stationary phase cells results in a 2-fold stimulation of dihydrofolate reductase synthesis, beginning 10 to 12 h after serum addition. Serum stimulation of dihydrofolate reductase synthesis is completely inhibited by the presence of dibutyryl cyclic AMP as well as by theophylline or prostaglandin E1, compounds which cause an increase in intracellular cyclic AMP levels. In fact, the presence of dibutyryl cyclic AMP and theophylline results in a 2- to 3-fold decrease in the rate of dihydrofolate reductase synthesis and the abundance of dihydrofolate reductase mRNA. However, in contrast to the effect on serum stimulation, dibutyryl cyclic AMP and theophylline do not inhibit polyoma virus induction of dihydrofolate reductase synthesis or dihydrofolate reductase mRNA levels. These observations suggest that dihydrofolate reductase gene expression is controlled by at least two regulatory pathways: one involving serum that is blocked by high levels of cyclic AMP and another involving polyoma induction that is not inhibited by cyclic AMP.  相似文献   

6.
The induction of tyrosine aminotransferase in HTC cells by derivatives of adenosine 3′,5′-monophosphate is not potentiated by theopylline, a commonly used inhibitor of cyclic nucleotide phosphodiesterase. In fact, the addition of theophylline to HTC cell cultures produces a rapid decrease in the level of tyrosine aminotransferase activity. The magnitude of this decrease is dependent upon the added concentration of theopylline in both the presence and absence of enzyme inducers. Among several other purines and pyrimidines tested, caffeine and adenine most strongly resemble theophylline in affecting tyrosine aminotransferase activity. Theophylline inhibits growth and both protein and RNA synthesis in HTC cells, but the inhibition of protein synthesis cannot account completely for the effect on tyrosine aminotransferase. Theophylline also seems to increse the rate of degradation of the enzyme without affecting the degradation rate for general cellular protein. The mechanism of this apparently specific increase in degradation rate differs from both the normal degradation process for the enzyme and the enhanced degradation produced by nutritional depletion of the medium.  相似文献   

7.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

8.
9.
I L Rouse  P H Pearce  I T Oliver 《Life sciences》1975,17(10):1571-1578
The relationship between the glucocorticoid binding capacity of rat liver cytosol and the activity of tyrosine aminotransferase has been studied in adrenalectomized male rats. Bilateral adrenalectomy of male rats caused an increase within 3 days in the level of specific dexamethasone binding of liver cytosol accompanied by a rapid decrease in tyrosine aminotransferase activity. Known inducers of tyrosine aminotransferase were administered in vivo to test their effect on dexamethasone binding capacity, in order to determine whether the induction was by an indirect mechanism involving an increase in glucocorticoid binding capacity. Insulin, adrenalin, glucagon, dibutyryl cyclic AMP and oestradiol caused a significant increase in the activity of the enzyme, with no change in the specific dexamethasone binding. Tetracosactrin, a synthetic analogue of ACTH, had no effect on either parameter. It was concluded that the induction of tyrosine aminotransferase by the compounds tested was not mediated by an increase in glucocorticoid receptor activity.  相似文献   

10.
The administration of N6, O2'-dibutyryl cyclic AMP and theophylline to fasted-refed rats produces an 8-fold stimulation of the relative rate of hepatic phosphoenolpyruvate carboxykinase synthesis in 90 min, as measured by isotopic immunochemical techniques in vivo. The mechanism of this induction was studied first by using a homologous, noninitiating cell-free protein-synthesizing system derived from the liver of fasted-refed, cyclic AMP-treated rats. In such a system, a 5-fold increase in phosphoenolpyruvate carboxykinase synthseis is observed at 20 min post-treatment and a 9-fold stimulation at 75 min, indicating a rapid increase in the number of ribosomes engaged in the translation of the enzyme mRNA after exposure to cyclic AMP. The level of functional mRNA coding for phosphoenolpyruvate carboxykinase was then assayed in a wheat germ protein-synthesizing system capable of using rat liver mRNA as template. The template activity for phosphoenolpyruvate carboxykinase synthesis is greatly increased in the poly(A)-containing RNA isolated from cyclic AMP-induced animals. Both the increase in the capacity of the liver extract for in vitro phosphoenolpyruvate carboxykinase synthesis and the emergence of enzyme mRNA detected in the wheat germ assay are completely prevented by a pretreatment with cordycepin at doses which inhibit the appearance in the cytoplasm of newly synthesized poly(A)-containing RNA. These data demonstrate that the induction of hepatic phosphoenolpyruvate carboxykinase by cyclic AMP is characterized by the rapid build-up of newly synthesized, actively translated mRNA coding for the enzyme. The messenger accumulation could be due to an increase in the rate of its production or a decrease in the rate of its degradation.  相似文献   

11.
Alanine-2-oxoglutarate aminotransferase activity in mouse liver is stimulated by the intravenous injection of glucagon. The stimulation is abolished by pretreatment with actinomycin D indicating that the increased activity is probably due to new enzyme formation. Administration of dibutyryl cyclic AMP, isoproterenol, an activator of adenyl cyclase and theophylline, an inhibitor of phosphodiesterase also increases the enzyme activity suggesting the involvement of cyclic AMP in glucagon-mediated increase of enzyme activity.  相似文献   

12.
A single injection of dibutyryl cyclic AMP (Bt2cAMP) into adrenalectomized rats results in rapid and proportionate increases in hepatic tyrosine aminotransferase catalytic activity and in the amount of functional mRNA coding for this enzyme. This effect is transient in that mRNATAT peaks at 0.065% of total poly(A)+RNA activity at 1 h and is back to the basal level of 0.012% in 2.5 h. Enzyme activity peaks at 2.5 h and is back to the basal level by 5 h. If Bt2cAMP is repeatedly injected (0, 1, 2.5, and 4 h), enzyme activity remains at maximal levels for 4 to 5 h, whereas changes in mRNATAT activity are identical with those observed in the single injected rats. The rate of tyrosine aminotransferase synthesis at 5.5 h in the multiply injected rats, a time when mRNATAT has already returned to the basal level, is 3 to 4 times greater than that in either control or singly injected rats at the same time (0.3% of total protein versus 0.07%) and is equivalent to the maximal rate seen 1 h after the initial injection of the cyclic nucleotide. Since the rate of synthesis is increased in proportion to the increase in enzyme catalytic activity, stabilization of the enzyme against degradation is excluded as an induction mechanism at this late time point. These responses are not due to differences in the metabolism of Bt2cAMP, and the effect depends on the presence of metabolically active derivatives of this nucleotide. It thus appears that Bt2cAMP induces the synthesis of tyrosine aminotransferase in rat liver in two distinct ways. One is pretranslational and involves a transient and rapid increase in mRNATAT activity. The second appears to involve a delayed but sustained increase in translation of a basal level of mRNATAT.  相似文献   

13.
An injection of cortisone acetate at a dose of 5 mg/100 g body weight concomitant with dibutyryl cyclic AMP prevents the increase in the activity of rat liver cytosol serine aminotransferase (L-serine:pyruvate aminotransferase, EC 2.6.1.51) elicited by the nucleotide with a lag of about 2 h. If the glucocorticoid is given 2 h prior to the nucleotide inducer, the lag disappears. The inhibitory effect of cortisone acetate gradually decays and is no longer detectable 12 h following its administration. Theophylline, insulin and glucose at doses which affect significantly the level of tyrosine aminotransferase, have not effect on the level of serine aminotransferase and on the cortisone inhibition. The inhibitory effect of the glucocorticoid on the dibutyryl cyclic AMP-mediated increase in serin aminotransferase diminishes with the age of animall. Increases in the enzyme activity by a single dose of glucagon can also be inhibited by cortisone acetate and actinomycin D as in the case with dibutyryl cyclic AMP as an inducer. The possibility of the existence of a specific inhibitory factor which is formed in response to cortisone acetate is discussed.  相似文献   

14.
Fatty acid synthetase activity in chick embryonic liver is negligible compared to that in newly hatched, fed chicks. The enzyme activity is prematurely induced 5–50-fold in 20-day-old embryos and in newly hatched chicks by the administration of insulin, hydrocortisone, growth hormone, glucagon or dibutyryl cyclic AMP. The induction of the enzyme activity is blocked by the administration of cycloheximide, indicating that new protein synthesis is required. Immunochemical titrations of different enzyme preparations from 5-day-old chicks, adult chicken and various inducer-treated embryos gave an identical equivalence point, indicating that the changes in synthetase activity after hormonal induction in embryos are related entirely to changes in content of enzyme. The increase in liver synthetase content after administration of insulin, glucagon or dibutyryl cyclic AMP is directly related to an increase in the rate of synthetase synthesis. The induction of the synthetase activity by suboptimal doses of glucagon or cyclic AMP is potentiated by the phosphodiesterase inhibitory theophylline. There is a very rapid decay of synthetase activity, with a half-life of about 4 h after elevation to higher levels following administration of insulin, glucagon or dibutyryl cyclic AMP. Glucagon and dibutyryl cyclic AMP induction of the synthetase activity is observed early in the embryonic development, whereas insulin induction is noted 2 days before hatching. Insulin, glucagon and cyclic AMP are potentially capable of altering the levels of glycolytic intermediates which may be involved in the induction of synthetase.  相似文献   

15.
An injection of cortisone acetate at a dose of 5 mg/100 g body weight concomitant with dibutryl cyclic AMP prevents the increase in the activity of rat liver cytosol serine aminotransferase (L-serine: pyruvate aminotransferase, EC 2.6.1.51) elicited by the nucleotide with a lag of about 2 h. If the glucocorticoid is given 2 h prior to the nucleotide inducer, the lag disappears. The inhibitory effect of cortisone acetate gradually decays and is no longer detectable 12 h following its administration. Theophylline, insulin and glucose at doses which affect significantly the level of tyrosine aminotransferase, have no effect on the level of serine aminotransferase and on the cortisone inhibition. The inhibitory effect of the glucocorticoid on the dibutyryl cyclic AMP-mediated increase in serine aminotransferase diminishes with the age of animals. Increase in the enzyme activity by a single dose of glucagon can also be inhibited by cortisone acetate and actinomycin D as in the case with dibutyrl cyclic AMP as an inducer. The possibility of the existence of a specific inhibitory factor which is formed in response to cortisone acetate is discussed.  相似文献   

16.
17.
18.
19.
20.
The H-4 rat hepatoma cell line grown in tissue culture was used as a model system to investigate the action of cAMP in tyrosine aminotransferase induction. An immunoprecipitation technique was used to quantitate the amount and the rate of synthesis of tyrosine aminotransferase; the level of mRNA coding for tyrosine aminotransferase was determined by in vitro translation of poly(A)+ RNA isolated from hepatoma cells. Our results demonstrated that 8-bromo-cAMP gave time-dependent and proportionate increases in the tyrosine aminotransferase activity, the amount of immunoprecipitable tyrosine aminotransferase, the rate of synthesis of tyrosine aminotransferase, and the level of mRNATAT in H-4 hepatoma cells. The time course of increase in mRNATAT preceded the increase in synthesis of tyrosine aminotransferase and was dependent on the continuous production of poly(A)+ RNA. Pretreatment of the cells with cordycepin completely abolished the 8-bromo-cAMP-evoked increase in mRNATAT activity. These results provided evidence that the primary action of cAMP in tyrosine aminotransferase induction is the increase of functional mRNATAT and that this increase can completely account for the increase in tyrosine aminotransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号