首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
The present study was designed to determine the effect of naloxone, a specific opiate receptor antagonist, on postprandial levels of insulin, glucagon, pancreatic polypeptide (PP), somatostatin-like immunoreactivity (SLI) and gastrin in response to carbohydrate and fat-rich test meals in a group of 6 healthy volunteers. The addition of naloxone to a meal consisting of 50 g sucrose dissolved in 200 ml water augmented the rise of plasma insulin levels significantly during the first 30 min after its ingestion and reduced the decrease of plasma glucagon. During the ingestion of a fat-rich meal in form of 200 ml cream naloxone reduced the rise in plasma insulin and pancreatic polypeptide and elevated glucagon levels during the last 30 min of the experimental period. When sucrose was dissolved in 200 ml cream the addition of naloxone augmented the postprandial rise of insulin levels between 15 and 60 min after ingestion of the meal and elicited an increase of plasma SLI and PP levels throughout the entire experimental period which indicates that post-prandial levels of insulin, glucagon, PP and SLI are modulated via endogenous opiate receptors during the ingestion of carbohydrate and fat test meals and that this effect depends on the composition of the ingested nutrients. These data raise the possibility that endogenous opiates participate in the regulation of postprandial insulin, glucagon, somatostatin and pancreatic polypeptide release not only in certain disease states as demonstrated recently for insulin secretion in type II diabetes mellitus but endogenous opiates may also be of importance under physiological conditions.  相似文献   

2.
Previously, we have demonstrated the effects of exogenously administered opiates on somatostatin release in dogs and therefore the present study was designed to determine the effect of endogenous opiates via naloxone-induced opiate receptor blockade on somatostatin release. Additionally, plasma insulin and pancreatic polypeptide (PP) levels were determined in response to intragastrically instilled protein, carbohydrate and fat test meals in a group of eight conscious dogs. To all test meals either naloxone (4 mg) or saline was added. The rise of plasma somatostatin levels in response to liver extract, sucrose and fat was attenuated significantly by naloxone. Naloxone had no effect on the rise of postprandial plasma insulin and PP levels. The present data demonstrate that endogenous opiates have a stimulatory effect on postprandial somatostatin release in dogs which indicates a tight interaction that might be of relevance for nutrient homeostasis.  相似文献   

3.
The postprandial release of immunoreactive insulin, glucagon, gastrin, somatostatin, pancreatic polypeptide (PP), and gastric inhibitory polypeptide (GIP) was studied in parallel with the absorption of sugars and amino acids in conscious pigs. Six pigs fitted with permanent catheters in the portal vein and arterial blood system as well as within an electromagnetic flow probe around the portal vein received successively at 3-day intervals, three meals of 800 g each containing 0, 14, or 28% protein (semisynthetic diets based on fish protein). Blood samples were collected and portal blood flow was recorded during a postprandial period of 8 h. For the same level of feed intake, an increase in the dietary protein concentration led to a higher alpha-amino nitrogen absorption and to a lower appearance of reducing sugars in the portal vein; in addition, the carbohydrate absorption efficiency (amounts absorbed as a percentage of amounts ingested) was reduced, showing the competition between the absorption of amino acids and glucose. The largest absorption occurred during the first 4 h after the meal, but neither the digestion of proteins nor that of carbohydrates were finished 8 h after the meal since portoarterial differences could still be observed. All test meals induced a rise of portal and peripheral concentrations of insulin, gastrin, somatostatin, and PP, and of the systemic level of GIP. Glucagon increased after the 28% protein meal only. The rise of plasma insulin paralleled that of blood glucose, and bore a significant positive relationship to the systemic GIP level in the early postprandial period. In terms of absolute amounts, portoarterial concentration gradients increased postprandially. Insulin release was significantly the highest after intake of the 14% protein diet. The gastrin response was significantly correlated to the amount of protein. Similarly the release of glucagon and somatostatin tended to increase with increasing dietary amount, but differences failed to reach significance (P less than 0.05), except for glucagon 2 h after the meal. There were very close relationships between the hourly amounts of alpha-amino nitrogen absorbed and gastrin and glucagon production, as between insulin and PP secretions. From the present results, the induction of physiological increments of plasma peptide concentration in 60-kg pigs would require infusion rates of about 50-250 micrograms/h for insulin, 1-4 micrograms/h for gastrin 17, 5-10 micrograms/h for glucagon and somatostatin, and 5-50 micrograms/h for PP.  相似文献   

4.
The present study examines the effect of orally and intravenously administered opiate-active substances on peripheral vein plasma pancreatic polypeptide (PP) levels in conscious dogs. The intragastric instillation of digested gluten stimulated postprandial PP levels significantly which was reduced by the specific opiate-receptor antagonist naloxone. Naloxone had no effect when added to undigested gluten. Similarly, naloxone reduced significantly the postprandial PP response to a test meal of casopeptone which contains the opiate-active β-casomorphins. The addition of synthetic β-casomorphins to a liver extract/sucrose test meal significantly augmented the rise of postprandial PP levels which was also blocked by naloxone. The intravenous infusion of morphine, leu-enkephalin, D-ala2-D-leu5-enkephalin, β-casomorphin-5 and β-casomorphin-4 elicited a dose-dependent and naloxone reversible effect on basal PP levels. During a background infusion of glucose and amino acids the same opiate-active substances had either none or a stimulatory effect on PP release in these dogs. The addition of naloxone abolished the stimulatory effect in response to β-casomorphin-5 and β-casomorphin-4 and resulted in an inhibition of PP levels during the infusion of morphine and leu-enkephalin. This latter inhibitory effect was no longer observed when the dose of naloxone was increased ten- and fifty-fold, respectively. The present data suggest that orally ingested opiate-active substances participate in the stimulation of postprandial PP release in dogs via specific opiate-receptor mediated mechanisms. The effect of intravenously administered opiate-active substances on PP levels depends on the metabolic state with regard to the level of circulating nutrients. It is suggested that PP release is stimulated via μ-opiate receptors and inhibited via δ-opiate receptors. An increase of circulating nutrients would “activate” μ-receptor sites which are masked in the basal state when exogenous opiates are administered. However, with regard to endogenous opiates an increase of circulating nutrients, mainly carbohydrates, activates inhibitory effects of endogenous opiates suggesting that exogenous and endogenous opiates act at different target sites.  相似文献   

5.
The release of somatostatin from the pancreas and stomach following the ingestion of a meal and its increase in the peripheral circulation elicits an attenuation of postprandial hormone secretion such as insulin, pancreatic polypeptide and gastrin and retards the rate at which nutrients enter the circulation. Reduced tissue somatostatin content and/or an attenuated somatostatin release is associated with hyperinsulinism and obesity in certain animal models. In the obese Zucker rat, however, tissue somatostatin levels are increased and therefore the present study was designed to determine the effect of synthetic somatostatin on basal and postprandial arterial insulin levels in obese and lean Zucker rats. Synthetic somatostatin was infused at doses of 0.25, 0.5, 1 and 5 ng/kg X min before and after the intragastric instillation of a liver extract/sucrose test meal. In the obese rats somatostatin at a dose of 5 ng/kg X min reduced basal plasma insulin levels significantly, whereas no effect of somatostatin was observed on basal insulin levels in the lean animals at all doses employed. The integrated postprandial insulin response was reduced during 0.25, 0.5, 1 and 5 ng/kg X min somatostatin in the obese animals, whereas only 0.5 ng/kg X min and higher doses had an inhibitory effect in the lean rats. The degree of inhibition in relation to the postprandial insulin response during saline infusions was 35-230% in the obese and 30-100% in the lean Zucker rats within the range of somatostatin infusions employed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Previous studies have indicated a possible influence of gastric emptying on postprandial pancreatic endocrine function and the present study was designed to determine if the rate at which nutrients enter the small intestine may play a role in the postprandial regulation of insulin, glucagon, somatostatin and gastrin release in conscious dogs. In response to an intraduodenal instillation of a liver extract--sucrose test meal postprandial insulin and glucagon levels increased significantly with increasing infusion rates of the test meal, whereas somatostatin and gastrin levels did not change. The rise of the endocrine factors preceded any increase of peripheral vein plasma glucose levels. The present data demonstrate that during the intestinal phase of a meal the rate of nutrient entry into the duodenum favours insulin and glucagon but not somatostatin and gastrin release. This mechanism could be of importance in the regulation of nutrient homeostasis during the ingestion of certain carbohydrate containing meals.  相似文献   

7.
To determine whether the metabolism of diet-derived triglycerides (TG) is acutely regulated by the consumption of insulinogenic carbohydrates, we measured the effects of glucose ingestion on oral and intravenous fat tolerance, and on serum triglyceride concentrations obtained during duodenal fat perfusion. Postprandial lipemia was diminished by the ingestion of 50 g (148 +/- 121 mg.dl-1 x 7 h-1 vs 192 +/- 124 mg.dl-1 x 7 h-1, P less than 0.05) and 100 g (104 +/- 106 mg.dl-1 x 7 h-1 vs 171 +/- 104 mg.dl-1 x 7 h-1, P less than 0.05) glucose. Peak postprandial TG concentrations occurred later after meals containing glucose and fat than after meals containing fat alone. This effect could be reproduced when an iso-osmotic quantity of urea was substituted for glucose in the test meal. Starch ingestion had no discernible effect on postprandial lipemia. Intravenous fat tolerance was similar before (4.9 +/- 1.2%.min-1) and 2 h (4.4 +/- 1.3%.min-1) and 4 h (4.8 +/- 1.5%.min-1) after 50 g glucose ingestion. During duodenal fat perfusion, glucose ingestion caused a progressive decrease in plasma triglyceride concentrations. These data suggest that glucose ingestion diminishes postprandial lipemia in a dose-dependent manner, but that this effect is not due to increased clearance of triglyceride from the circulation. The hypotriglyceridemic effects of glucose appear to reflect delayed gastric emptying and decreased hepatic secretion of triglyceride.  相似文献   

8.
The possibility that salt increases plasma glucose and insulin responses to starchy foods was investigated. Six healthy adults took four morning test meals randomly: 50 g carbohydrate as cooked lentils or white bread, with or without 4.25 g of added salt (an amount within the range of salt found in a meal). When salt was added to the lentils the incremental area under the three hour plasma glucose curve was significantly greater than that for lentils alone (43.2 mmol.min/l v 11.1 mmol.min/l (778 mg.min/100 ml v 200 mg.min/100 ml]. When salt was added to bread the peak glucose concentration was significantly higher than that for unsalted bread (6.96 mmol/l v 6.35 mmol/l (125 mg/100 ml v 114 mg/100 ml], and this was followed by relative hypoglycaemia. Plasma insulin concentrations at 45 minutes were higher after a meal of salted lentils and salted bread than after the unsalted foods (p less than 0.05). The high insulin concentration after salted bread was sustained for one hour after the meal, thus the mean area under the three hour curve was 39% greater than that for unsalted bread (p less than 0.05). Salt may increase the postprandial plasma glucose and insulin responses to lentils and bread by accelerating the digestion of starch by stimulating amylase activity or accelerating small intestinal absorption of the liberated glucose, or both. The findings of this preliminary study, if confirmed by others, would support the recommendation that diabetics, as well as the general population, should reduce their intake of salt.  相似文献   

9.
Time‐dependent variations in the hormonal and metabolic responses to food are of importance to human health, as postprandial metabolic responses have been implicated as risk factors in a number of major diseases, including cardiovascular disease. Early work reported decreasing glucose tolerance in the evening and at night with evidence for insulin resistance at night. Subsequently an endogenous circadian component, assessed in constant routine (CR), as well as an influence of sleep time, was described for glucose and insulin. Plasma triacylglycerol (TAG), the major lipid component of dietary fat circulating after a meal, also appears to be influenced by both the circadian clock and sleep time with higher levels during biological night (defined as the time between the onset and offset of melatonin secretion) despite identical hourly nutrient intake. These time‐dependent differences in postprandial responses have implications for shiftworkers. In the case of an unadapted night shift worker, meals during work time will be taken during biological night. In simulated night shift conditions the TAG response to a standard meal, preceded by either a low‐fat or a high‐fat premeal, was higher after a nighttime meal than during a daytime meal, and the day/night difference was larger in men than in women. In real night shift workers in Antarctica, insulin, glucose, and TAG all showed an increased response after a nighttime meal (second day of night shift) compared to a daytime meal. Night shift workers are reported to have an approximately 1.5 times higher incidence of heart disease risk and also demonstrate higher TAG levels compared with matched dayworkers. As both insulin resistance and elevated circulating TAG are independent risk factors for heart disease, it is possible that meals at night may contribute to this risk.  相似文献   

10.
In a previous study, D-chiroinositol added to a meal (0.5 g/kg) resulted in significantly lower postprandial plasma glucose concentrations without an increase in insulin concentrations in obese insulin-resistant monkeys. The present report describes the effects of another isomer of inositol, myoinositol, on postprandial plasma glucose and insulin concentrations and on urine glucose concentrations in 6 similarly insulin-resistant monkeys. The three 5 day study periods included a control period (liquid diet ad libitum) and 2 experimental periods (liquid diet ad libitum with either 1.5 g/kg/day myoinositol or D-chiroinositol added). Twenty-four hour urine samples were collected during each 5 day period. On the sixth day of each period the monkeys were anesthetized 110 min after completing either the control meal (15 ml/kg) or the experimental meals (1.5 g/kg myoinositol or D-chiroinositol) and plasma samples were obtained at 120, 150,180, 210, 240, 270 and 300 min. The plasma glucose concentration was lower after the meal with myoinositol compared to the control meal at 120, 150 and 180 min (p's<0.05). The plasma insulin concentration was lower after the meal with myoinositol compared to the control meal at 150 and 180 min (p's<0.05). In addition, 24 hour urine glucose concentrations were lower during the myoinositol diet compared to the control diet (p<0.001). The plasma glucose concentration was lower after the meal with D-chiroinositol compared to the control meal at 150, 240, 270 and 300 min (p's≥0.05). In obese insulin-resistant monkeys, myoinositol added to the diet lowers urine glucose concentrations and both myoinositol and D-chiroinositol added to a meal lower postprandial plasma glucose concentrations without increasing postprandial insulin concentrations. Therefore, myoinositol, like D-chiroinositol, may be a useful agent for reducing meal-induced hyperglycemia without inducing hyperinsulinemia in insulin-resistant subjects.  相似文献   

11.
R Schick  V Schusdziarra 《Peptides》1985,6(5):861-864
Somatostatin release in dogs is modulated by exogenous and endogenous opioids. Since postprandial somatostatin secretion is in part due to the stimulatory effect of postprandially activated gastrointestinal hormones as well as endogenous opioids, it was of interest to determine the interaction between motilin, a known stimulus of somatostatin release, and endogenous opioids with regard to activation of D-cell function. In a group of eight conscious dogs the infusion of synthetic porcine motilin at doses of 0.05, 0.25 and 0.5 micrograms/kg X hr elicited a significant increase of peripheral vein plasma somatostatin-like immunoreactivity (SLI), confirming previously reported data. The additional infusion of the opiate receptor antagonist naloxone attenuated this SLI response, suggesting that endogenous opioids participate in motilin-induced SLI release. Since previous studies have shown that the interaction between endogenous opioids and postprandial somatostatin secretion is modified by elevated plasma glucose levels, the experiments were repeated during an IV glucose (0.2 g/min) background infusion increasing circulating glucose levels by 20-30 mg/dl. During IV glucose, the SLI response to motilin was almost abolished. In this group the addition of naloxone restored the SLI response, indicating that the inhibitory effect of elevated glucose on D-cell function is, at least in part, mediated by endogenous opioids. These data suggest that motilin has to be considered as one regulatory factor which participates in the previously observed interaction between glucose and endogenous opioids during postprandial SLI release.  相似文献   

12.
The present study was designed to examine the role of neural cholinergic mechanisms in intestinal phase insulin secretion during increasing intraduodenal instillation rates of the test meals. In groups of 12 anesthetized rats arterial insulin levels rose significantly in relation to the increase of the rate at which the liver extract/sucrose was instilled intraduodenally (0.15, 0.5 and 1.5 ml/min). The injection of atropine (10 micrograms/kg) 5 min prior to the intraduodenal infusion of the test meals abolished this rate-dependent augmentation of insulin levels completely. Similarly, no effect of increasing intraduodenal infusion rates of the meal was observed in islet-transplanted rats. These data demonstrate that neural - at least in part muscarinic cholinergic - mechanisms participate in intestinal phase insulin secretion of rats supporting previous observations about the importance of neural factors in the regulation of postprandial insulin release.  相似文献   

13.
Plasma concentrations of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) were measured before, during and for between 2 and 6 hr following a meal, in young growing piglets. T3 increased after a meal and reached a peak at approximately 60 min. The magnitude of the rise was dependent on both the energy content and nutrient composition of the meal. In animals given either a high or low energy intake baseline values of T3 were similar, whereas there was a difference in the response to a meal (P less than 0.01). Average increases in hormone concentration were 120% (P less than 0.001) and 50% (P less than 0.05) on the high and low intakes respectively. Plasma T4 also increased in those on high intake (P less than 0.025), but no change was detected when the intake was low. The response of T3 to a meal high in either glucose, sucrose, fat or protein was statistically significant except for the protein meal. The rise in T4 after each of these four meals was less consistent, although it did increase significantly after meals high in sucrose or fat. Amongst several possibilities, these results suggest that a meal may induce an increase in secretion of T3 and T4 from the thyroid gland.  相似文献   

14.
Obese subjects have lower basal and an attenuated decrease of postprandial plasma ghrelin following carbohydrate-rich meals, while the response to protein is unknown. Therefore, plasma ghrelin levels were examined after ingestion of satiating amounts of a protein- or carbohydrate-rich meal in relation to food and energy intake and hunger/satiety ratings in 30 obese subjects followed 240 min later by ad lib sandwiches. Food intake and hunger/satiety ratings were identical while energy intake was significantly greater after bread (861 +/- 62.7 vs. 441 +/- 50.4 kcal, p < 0.001). Second meal food and energy intake were not different. Ghrelin decreased after bread, but increased by 50 pg/ml (p < 0.001) after meat. The corresponding increase of insulin was 55 vs. 9 microU/ml (p < 0.001). Glycerol levels decreased significantly less after the protein meal compared to carbohydrates. After protein glycerol was significantly correlated to the rise of ghrelin but not insulin. These data demonstrate that, in obese subjects, protein has no different satiating effect than carbohydrate despite divergent ghrelin levels. Energy intake corresponds to energy density of the respective food items. Ghrelin response to both meals is qualitatively similar but quantitatively attenuated compared to normal weight subjects. The relationship between ghrelin and glycerol would support recent observations of a possible role of ghrelin in fat metabolism.  相似文献   

15.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

16.
Metabolic syndrome is a multicomponent disorder whose etiology is the result of a complex interaction between genetic, metabolic and environmental factors including dietary habits. Our aim was to identify proteome–diet interactions during the postprandial state after the acute intake of four meals with different qualities of fat in the proteome of peripheral blood mononuclear cells. A randomized controlled trial conducted within the LIPGENE study assigned 39 metabolic syndrome patients to one of four meals: a high-saturated-fatty-acid (HSFA) meal, a high-monounsaturated-fatty-acid (HMUFA) meal and two high-polyunsaturated-fatty-acid (from walnut) (HPUFA) meals supplemented with n-3 PUFA or placebo. We analyzed the postprandial changes in the whole proteome of both nuclear and cytoplasmic fractions of peripheral blood mononuclear cells by two-dimensional proteomics. Twenty-three proteins were differentially expressed. HSFA intake caused the postprandial increase of proteins responding to oxidative stress (HSPA1A, PDIA3 and PSME1) and DNA damage (SMC6), whereas HMUFA intake led to the up-regulation of HSPA1A and PDIA3. HPUFA meal supplementation with n-3 PUFA produced peroxisomal beta-oxidation inhibition by down-regulation of ECH1, a process related to insulin signaling improvement. In conclusion, HSFA meal intake causes deleterious postprandial changes in the proteome in terms of DNA damage and procoagulant state, which reflect a higher postprandial oxidative stress after HSFA meal intake as compared to intake of HMUFA and HPUFA meals. Moreover, the addition of long-chain n-3 PUFA to an HPUFA meal may improve insulin signaling and exerts an anti-inflammatory effect when compared to an HPUFA meal.  相似文献   

17.
The present study was designed to determine if orally administered somatostatin can reduce the postprandial rise in plasma triglycerides, gastrin, gut glucagon-like immunoreactivity (GLI) and the pancreatic hormones insulin and glucagon. Ten overnight fasted dogs were fed a fat-protein meal with or without 2 mg synthetic somatostatin, followed by another 2 mg somatostatin 90 min later. After the meal with somatostatin, postprandial plasma triglyceride levels were significantly lower for 5 hours, GLI levels for 3.5 hours and gastrin levels for 1 hour compared to the controls. Plasma insulin, glucagon and somatostatin-like immunoreactivity was not different from the control experiments. It is concluded that orally administered somatostatin lowers the postprandial levels of triglycerides, GLI and gastrin in dogs. This may have therapeutic implications for the management of gastrointestinal and metabolic disorders.  相似文献   

18.
Long chain n-3 fatty acids present in fish oils have been shown to reduce fasting plasma triglyceride and very low density lipoprotein levels in normal and hyperlipidemic human subjects. The present studies were designed to examine whether dietary n-3 fatty acids influence chylomicron formation and metabolism in healthy volunteers. In the first study seven subjects were fed either saturated fat, vegetable oil, or fish oil-based diets for 4 weeks each, and test meals containing 50 g of the background fat were administered after the second week of each diet. The postprandial rise in triglyceride levels was significantly lower following the fish oil test meal as compared to the saturated fat or vegetable oil test meals. In the second study, six subjects eating their usual home diets were given two fat tolerance tests. The first contained saturated fat and the second, given 1 week later, contained fish oil. There was no difference in the postprandial triglyceride response between the fish oil and the saturated fat meals. A third study was then conducted with eight volunteers in which saturated fat and fish oil test meals were administered during saturated fat and fish oil background diets in a crossover design. The presence of fish oil in the background diet reduced postprandial lipemia regardless of the type of fat in the test meal. Although there was no effect of the fish oil diet on the lipoprotein lipase and hepatic lipase activity of postheparin plasma measured in vitro, stimulation of in vivo lipolysis was not ruled out. Our results suggest that chronic (but not acute) intake of fish oil may inhibit the synthesis or secretion of chylomicrons from the gut. However, accelerated clearance due to decreased VLDL competition cannot be excluded.  相似文献   

19.
Circadian aspects of postprandial metabolism   总被引:5,自引:0,他引:5  
Time-dependent variations in the hormonal and metabolic responses to food are of importance to human health, as postprandial metabolic responses have been implicated as risk factors in a number of major diseases, including cardiovascular disease. Early work reported decreasing glucose tolerance in the evening and at night with evidence for insulin resistance at night. Subsequently an endogenous circadian component, assessed in constant routine (CR), as well as an influence of sleep time, was described for glucose and insulin. Plasma triacylglycerol (TAG), the major lipid component of dietary fat circulating after a meal, also appears to be influenced by both the circadian clock and sleep time with higher levels during biological night (defined as the time between the onset and offset of melatonin secretion) despite identical hourly nutrient intake. These time-dependent differences in postprandial responses have implications for shiftworkers. In the case of an unadapted night shift worker, meals during work time will be taken during biological night. In simulated night shift conditions the TAG response to a standard meal, preceded by either a low-fat or a high-fat premeal, was higher after a nighttime meal than during a daytime meal, and the day/night difference was larger in men than in women. In real night shift workers in Antarctica, insulin, glucose, and TAG all showed an increased response after a nighttime meal (second day of night shift) compared to a daytime meal. Night shift workers are reported to have an approximately 1.5 times higher incidence of heart disease risk and also demonstrate higher TAG levels compared with matched dayworkers. As both insulin resistance and elevated circulating TAG are independent risk factors for heart disease, it is possible that meals at night may contribute to this risk.  相似文献   

20.
Data are presented which indicate that the transition of acetyl-CoA carboxylase between the active polymeric and inactive protomeric conformations defined for the purified enzyme also occurs with the enzyme in vivo, depends upon the nutritional state of the animal, and is an important physiological phenomenon in the acute regulation of liver fatty acid synthesis. This conclusion utilized the observation that the protomeric form of purified acetyl-CoA carboxylase is inactivated by the binding of avidin to the biotinyl prosthetic group; the catalytically active filamentous form of the enzyme is resistant to avidin. Acetyl-CoA carboxylase activity was 75% avidin-resistant (polymeric) in the liver of meal-fed rats that had completed the consumption of a high glucose meal. This avidin resistance gradually decreased to 20% during the 21-h interval between meals. Peak resistance to avidin of liver carboxylase was attained within 30 min of initiating meal ingestion. The rise in carboxylase resistance to avidin could not be mimicked by insulin injection alone, but could be greatly attenuated by the addition of fat to the glucose meal. The amount of avidin-resistant acetyl-CoA carboxylase was closely associated with the concentration of hepatic malonyl-CoA and the subsequent rate of fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号