首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNA-206: the skeletal muscle-specific myomiR   总被引:2,自引:0,他引:2  
  相似文献   

2.
MicroRNAs (miRNAs) are 19- to 25-nt fragments cleaved from 70- to 100-nt hairpin precursors. These molecules participate in essential biological processes. It was estimated that 30% of all protein-coding genes are miRNA targets. Thousands of miRNAs have already been identified in plants and animals, but little is known about their biological roles. MicroRNA375 (miR375) is highly expressed in pancreatic islets of humans and mice and regulates insulin secretion in isolated pancreatic cells. To improve our understanding of the biological roles of miR375, we constructed the plasmid pAAV-miR375 and transfected it into mouse Nit-1 cells. Real-time PCR and Northern blot analysis showed that the Nit-1 cells transfected with pAAV-miR375 over-expressed the mature miR375 compared with Nit-1 cells transfected with control plasmid or untransfected cells. The expression of myotrophin (Mtpn) decreased and insulin secretion was reduced in Nit-1 cells transfected with pAAV-miR375. In this study, we successfully established an over-expression system for miR375 and a technique to study the biological function of miRNAs by over-expression. We verified that miR375 reduced glucose-induced insulin secretion by down-regulating the expression of Mtpn in Nit-1 cells in vitro, suggesting that miR375 has potential therapeutic applications in type II diabetes.  相似文献   

3.
Pasha Z  Haider HKh  Ashraf M 《PloS one》2011,6(8):e23667
The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules.

Methods and Results

SMs from young male Oct3/4-GFP+ transgenic mouse were treated with DNA methyltransferase (DNMT) inhibitor, RG108. Two weeks later, GFP+ colonies of SM derived iPS cells (SiPS) expressing GFP and with morphological similarity of mouse embryonic stem (ESCs) were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs) formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group), extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group). A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed.

Conclusions

Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.  相似文献   

4.
5.
6.
N‐cadherin‐mediated adhesion is essential for maintaining the tissue architecture and stem cell niche in the developing neocortex. N‐cadherin expression level is precisely and dynamically controlled throughout development; however, the underlying regulatory mechanisms remain largely unknown. MicroRNAs (miRNAs) play an important role in the regulation of protein expression and subcellular localisation. In this study, we show that three miRNAs belonging to the miR379–410 cluster regulate N‐cadherin expression levels in neural stem cells and migrating neurons. The overexpression of these three miRNAs in radial glial cells repressed N‐cadherin expression and increased neural stem cell differentiation and neuronal migration. This phenotype was rescued when N‐cadherin was expressed from a miRNA‐insensitive construct. Transient abrogation of the miRNAs reduced stem cell differentiation and increased cell proliferation. The overexpression of these miRNAs specifically in newborn neurons delayed migration into the cortical plate, whereas the knockdown increased migration. Collectively, our results indicate a novel role for miRNAs of the miR379–410 cluster in the fine‐tuning of N‐cadherin expression level and in the regulation of neurogenesis and neuronal migration in the developing neocortex.  相似文献   

7.
Cardiac hypertrophy, which is characterized by an increase in cell size and reactivation of fetal genes, occurs as an adaptive response to diverse forms of stress and often results in heart failure and sudden death. Growing evidence indicates that microRNAs (miRNAs) are involved in cardiac hypertrophy, but the function of these miRNAs remains elusive. Here, using real time PCR analysis, we showed that several miRNAs were dynamically regulated in the rat hypertrophic hearts and miR‐199a was up‐regulated by 10‐fold in hypertrophic hearts after abdominal aorta constriction for 12 weeks. With tissue profiling analysis, we showed that miR‐199a was predominantly expressed in cardiomyocytes, but was also faintly detected in cardiac fibroblasts. To investigate whether miR‐199a was involved in cardiac hypertrophy, both over‐expression and knockdown of miR‐199a were performed in cultured cardiomyocytes. Over‐expression of miR‐199a in cardiomyocytes increased the cell size as measured by cell surface area, and also reduced the mRNA expression level of α‐myosin heavy chain. In accordance, knockdown of endogenous miR‐199a in cardiomyocytes reduced the cell size. Down‐regulation of miR‐199a also attenuated the phenylephrine‐induced increase of cell size. Furthermore, bioinformatic algorithms were used to predict the potential targets of miR‐199a in cardiac hypertrophy, and hypoxia‐inducible factor 1 alpha was confirmed by the luciferase reporter assay to be a potential target of miR‐199a. Taken together, our results demonstrated that miR‐199a, which was predominantly expressed in cardiomyocytes, was essential for the maintenance of cell size of cardiomyocytes and might play a role in the regulation of cardiac hypertrophy. J. Cell. Physiol. 225: 437–443, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
Skeletal muscle has received much attention with regard to developmental origin, control of cell differentiation and regeneration. In this article, early landmarks in skeletal muscle research are reviewed and recent findings on myogenesis are addressed with particular focus on novel regulatory molecules including miRNAs, as well as on the topographical heterogeneity of skeletal muscle origin. The latter has developed into a central theme of keen interest in the past years, particularly since overlaps in genetic and embryological background between head muscle subsets and heart muscle have been described. As embryonic myogenesis and regenerating myofibers employ common molecules, the heterogeneity in embryonic sources from which skeletal muscle groups in the vertebrate body take origin is closely reflected by differences in the susceptibility to particular muscle dystrophies as well as their regeneration potential. In the regeneration chapter of this review the progress that has been made in the field of muscle stem cell biology, with special focus on the satellite cells, is outlined. Satellite cells are considered the most promising source of muscle stem cells possessing a high regenerative potential. We shall discuss recent insights into the heterogeneous nature of these satellite cells not just in terms of their expression profile but also their regeneration potential. Latest findings about the motility of the satellite cell shall also be discussed. Furthermore, we shall outline the impact of an improved understanding of muscle stem cells within their environment, and of satellite cells in particular, on efficient stem cell replacement therapies for muscular dystrophies, putting embryological findings and stem cell approaches into context.  相似文献   

10.
11.
白玉  陆雯芸  韩凝  边红武  朱睦元 《遗传》2014,36(7):631-636
MicroRNAs (miRNAs)是一种重要的转录后水平进行调控的非编码小分子RNA。目前已发现许多miRNAs参与细胞增殖、分化、发育及凋亡等复杂的生物进程, 其中miR126是一种来源于Egfl7第7个内含子的保守型内含子miRNA, 主要在哺乳动物的内皮细胞(Endothelial cells, ECs)及浆细胞样树突状细胞(Plasmacytoid dendritic cells, pDCs)内表达, 参与血管的新生及癌细胞的增殖与迁移。最新的研究表明, miR126是迄今唯一参与先天性免疫平稳期病毒应答反应的miRNA, 预示着miR126有可能成为治疗癌症及免疫缺陷病的靶标分子。文章综述了miR126在血管新生和癌症中的功能, 并着重介绍了miR126与先天性免疫的关系。  相似文献   

12.
刘鹤  宋丽萍  黄文林 《微生物学报》2010,50(10):1399-1405
摘要:【目的】研究发现microRNAs(miRNAs)可以参与调控病毒在宿主细胞内感染和复制的过程。作者研究了两条miRNAs对H1N1型流感病毒在宿主细胞内复制的影响。【方法】构建miR26a和miR939的高效表达载体,并将这两种表达载体转入MDCK细胞中,24 h后用H1N1型流感病毒感染转染后的MDCK (Madin dardy canine kidney) 细胞,接种72 h后,检测流感病毒的复制情况,研究miR26a和miR939对H1N1型流感病毒在MDCK细胞内复制的影响。【结果】实验结果表明,miRNAs的表达载体可以在细胞内高效表达miRNAs,不同的miRNAs对流感病毒在MDCK细胞中复制的调控作用不同, miR26a可以有效抑制流感病毒在MDCK细胞中的复制,而miR939则促进流感病毒在MDCK细胞中的复制的作用。【结论】细胞内miRNAs可以调控H1N1型流感病毒在宿主细胞中的复制过程,本文首次报导miR26a和miR939在流感病毒复制过程中的调控作用。  相似文献   

13.
Myc proteins are known to have an important function in stem cell maintenance. As Myc has been shown earlier to regulate microRNAs (miRNAs) involved in proliferation, we sought to determine whether c‐Myc also affects embryonic stem (ES) cell maintenance and differentiation through miRNAs. Using a quantitative primer‐extension PCR assay we identified miRNAs, including, miR‐141, miR‐200, and miR‐429 whose expression is regulated by c‐Myc in ES cells, but not in the differentiated and tumourigenic derivatives of ES cells. Chromatin immunoprecipitation analyses indicate that in ES cells c‐Myc binds proximal to genomic regions encoding the induced miRNAs. We used expression profiling and seed homology to identify genes specifically downregulated both by these miRNAs and by c‐Myc. We further show that the introduction of c‐Myc‐induced miRNAs into murine ES cells significantly attenuates the downregulation of pluripotency markers on induction of differentiation after withdrawal of the ES cell maintenance factor LIF. In contrast, knockdown of the endogenous miRNAs accelerate differentiation. Our data show that in ES cells c‐Myc acts, in part, through a subset of miRNAs to attenuate differentiation.  相似文献   

14.
Cells that express MyoD mRNA, the G8 antigen and the bone morphogenetic protein (BMP) inhibitor noggin (Nog) are present in the epiblast before gastrulation. Ablation of “Myo/Nog” cells in the blastocyst results in an expansion of canonical BMP signaling and prevents the expression of noggin and follistatin before and after the onset of gastrulation. Once eliminated in the epiblast, they are neither replaced nor compensated for as development progresses. Older embryos lacking Myo/Nog cells exhibit severe axial malformations. Although Wnts and Sonic hedgehog are expressed in ablated embryos, skeletal muscle progenitors expressing Pax3 are missing in the somites. Pax3+ cells do emerge adjacent to Wnt3a+ cells in vitro; however, few undergo skeletal myogenesis. Ablation of Myo/Nog cells also results in ectopically placed cardiac progenitors and cardiomyocytes in the somites. Reintroduction of Myo/Nog cells into the epiblast of ablated embryos restores normal patterns of BMP signaling, morphogenesis and skeletal myogenesis, and inhibits the expression of cardiac markers in the somites. This study demonstrates that Myo/Nog cells are essential regulators of BMP signaling in the early epiblast and are indispensable for normal morphogenesis and striated muscle lineage specification.  相似文献   

15.
16.
Muscle satellite cells have long been considered a distinct myogenic lineage responsible for postnatal growth, repair, and maintenance of skeletal muscle. Recent studies in mice, however, have revealed the potential for highly purified hematopoietic stem cells from bone marrow to participate in muscle regeneration. Perhaps more significantly, a population of putative stem cells isolated directly from skeletal muscle efficiently reconstitutes the hematopoietic compartment and participates in muscle regeneration following intravenous injection in mice. The plasticity of muscle stem cells has raised important questions regarding the relationship between the muscle-derived stem cells and the skeletal muscle satellite cells. Furthermore, the ability of hematopoietic cells to undergo myogenesis has prompted new investigations into the embryonic origin of satellite cells. Recent developmental studies suggest that a population of satellite cells is derived from progenitors in the embryonic vasculature. Taken together, these studies provide the first evidence that pluripotential stem cells are present within adult skeletal muscle. Tissue-specific stem cells, including satellite cells, may share a common embryonic origin and possess the capacity to activate diverse genetic programs in response to environmental stimuli. Manipulation of such tissue-specific stem cells may eventually revolutionize therapies for degenerative diseases, including muscular dystrophy.  相似文献   

17.
Regulation of miR319 during cold stress in sugarcane   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are part of a novel mechanism of gene regulation that is active in plants under abiotic stress conditions. In the present study, 12 miRNAs were analysed to identify miRNAs differentially expressed in sugarcane subjected to cold stress (4 °C). The expression of miRNAs assayed by stem–loop RT‐PCR showed that miR319 is up‐regulated in sugarcane plantlets exposed to 4 °C for 24 h. The induction of miR319 expression during cold stress was observed in both roots and shoots. Sugarcane miR319 was also regulated by treatment with abscisic acid. Putative targets of this miRNA were identified and their expression levels were decreased in sugarcane plantlets exposed to cold. The cleavage sites of two targets were mapped using a 5′ RACE PCR assay confirming the regulation of these genes by miR319. When sugarcane cultivars contrasting in cold tolerance were subjected to 4 °C, we observed up‐regulation of miR319 and down‐regulation of the targets in both varieties; however, the changes in expression were delayed in the cold‐tolerant cultivar. These results suggest that differences in timing and levels of the expression of miR319 and its targets could be tested as markers for selection of cold‐tolerant sugarcane cultivars.  相似文献   

18.
19.
20.
The first step in microRNA (miRNA) biogenesis usually involves cleavage at the base of its fold‐back precursor. Here, we describe a non‐canonical processing mechanism for miRNAs miR319 and miR159 in Arabidopsis thaliana. We found that their biogenesis begins with the cleavage of the loop, instead of the usual cut at the base of the stem–loop structure. DICER‐LIKE 1 (DCL1) proceeds then with three additional cuts until the mature miRNA is released. We further show that the conserved upper stem of the miR319 precursor is essential to organize its biogenesis, whereas sequences below the miRNA/miRNA* region are dispensable. In addition, the bulges present in the fold‐back structure reduce the accumulation of small RNAs other than the miRNA. The biogenesis of miR319 is conserved in the moss Physcomitrella patens, showing that this processing mechanism is ancient. These results provide new insights into the plasticity of small‐RNA pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号