首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The outcome of human pregnancy depends on the differentiation of cytotrophoblasts, specialized placental cells that physically connect the embryo/fetus to the mother. As cytotrophoblasts differentiate, they acquire tumor-like characteristics that enable them to invade the uterus. In a novel feedback loop, the increasingly higher levels of oxygen they encounter within the uterine wall influence their differentiation into vascular-like cells. Together, the invasive and cell surface properties of cytotrophoblasts enable them to form vascular connections with uterine blood vessels that divert maternal blood flow to the placenta, a critical hurdle in pregnancy. It is therefore important to understand how cytotrophoblasts respond to changes in oxygen tension. Here we used a proteomics approach, two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) combined with mass spectrometry, to characterize the protein repertoire of first trimester human cytotrophoblasts that were maintained under standard tissue culture conditions (20% O(2)). 2-D PAGE showed a unique protein map as compared to placental fibroblasts and human JEG-3 choriocarcinoma cells. Mass spectrometry allowed the identification of 43 spots on the cytotrophoblast map. Enzymes involved in glycolysis and responses to oxidative stress, as well as the 14-3-3 signaling/adapter proteins, were particularly abundant. Hypoxia in vitro (2% O(2)) produced discrete changes in the expression of a subset of proteins in all the aforementioned functional categories. Together, these data offer new information about the early gestation cytotrophoblast protein repertoire and the generalized mechanisms the cells use to respond to changes in oxygen tension at the maternal-fetal interface.  相似文献   

2.
During early pregnancy, fetal chorionic villi that contact the uterine wall give rise to columns of mononuclear cytotrophoblasts that penetrate the superficial portion of the uterus. From these columns emanate cytotrophoblasts that invade deeply into the uterus and its arterioles. To investigate the molecular basis of this unusual, regulated invasive behavior, we used a combination of approaches that included an in vitro model of cytotrophoblasts invasion and immunocytochemistry on uterine biopsy sections containing invading cytotrophoblasts. Our results showed interesting roles for: matrix-degrading metalloproteinases, adhesion receptors and their extracellular matrix ligands, and the class I molecule HLA-G.  相似文献   

3.
4.
In the mature chorion, one of the membranes that exist during pregnancy between the developing fetus and mother, human placental cells form highly specialized tissues composed of mesenchyme and floating or anchoring villi. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes; however, chromosome losses were detected infrequently. With chromosomes gained in what appeared to be a chromosome-specific manner, more than half of the invasive cytotrophoblasts in normal pregnancies were found to be hyperdiploid. Interestingly, the rates of hyperdiploid cells depended not only on gestational age, but were strongly associated with the extraembryonic compartment at the fetal-maternal interface from which they were isolated. Since hyperdiploid cells showed drastically reduced DNA replication as measured by bromodeoxyuridine incorporation, we conclude that aneuploidy is a part of the normal process of placentation potentially limiting the proliferative capabilities of invasive cytotrophoblasts. Thus, under the special circumstances of human reproduction, somatic genomic variations may exert a beneficial, anti-neoplastic effect on the organism.  相似文献   

5.
Human fetal development depends on the embryo rapidly gaining access to the maternal circulation. The trophoblast cells that form the fetal portion of the human placenta have solved this problem by transiently exhibiting certain tumor-like properties. Thus, during early pregnancy fetal cytotrophoblast cells invade the uterus and its arterial network. This process peaks during the twelfth week of pregnancy and declines rapidly thereafter, suggesting that the highly specialized, invasive behavior of the cytotrophoblast cells is closely regulated. Since little is known about the actual mechanisms involved, we developed an isolation procedure for cytotrophoblasts from placentas of different gestational ages to study their adhesive and invasive properties in vitro. Cytotrophoblasts isolated from first, second, and third trimester human placentas were plated on the basement membrane-like extracellular matrix produced by the PF HR9 teratocarcinoma cell line. Cells from all trimesters expressed the calcium-dependent cell adhesion molecule cell-CAM 120/80 (E-cadherin) which, in the placenta, is specific for cytotrophoblasts. However, only the first trimester cytotrophoblast cells degraded the matrices on which they were cultured, leaving large gaps in the basement membrane substrates and releasing low molecular mass 3H-labeled matrix components into the medium. No similar degradative activity was observed when second or third trimester cytotrophoblast cells, first trimester human placental fibroblasts, or the human choriocarcinoma cell lines BeWo and JAR were cultured on radiolabeled matrices. To begin to understand the biochemical basis of this degradative behavior, the substrate gel technique was used to analyze the cell-associated and secreted proteinase activities expressed by early, mid, and late gestation cytotrophoblasts. Several gelatin-degrading proteinases were uniquely expressed by early gestation, invasive cytotrophoblasts, and all these activities could be abolished by inhibitors of metalloproteinases. By early second trimester, the time when cytotrophoblast invasion rapidly diminishes in vivo, the proteinase pattern of the cytotrophoblasts was identical to that of term, noninvasive cells. These results are the first evidence suggesting that specialized, temporally regulated metalloproteinases are involved in trophoblast invasion of the uterus. Since the cytotrophoblasts from first trimester and later gestation placentas maintain for several days the temporally regulated degradative behavior displayed in vivo, the short-term cytotrophoblast outgrowth culture system described here should be useful in studying some of the early events in human placen  相似文献   

6.
Cytomegalovirus (CMV), the major viral cause of congenital disease, infects the uterus and developing placenta and spreads to the fetus throughout gestation. Virus replicates in invasive cytotrophoblasts in the decidua, and maternal immunoglobulin G (IgG)-CMV virion complexes, which are transcytosed by the neonatal Fc receptor across syncytiotrophoblasts, infect underlying cytotrophoblasts in chorionic villi. Immunity is central to protection of the placenta-fetal unit: infection can occur when IgG has a low neutralizing titer. Here we used immunohistochemical and function-blocking methods to correlate infection in the placenta with expression of potential CMV receptors in situ and in vitro. In placental villi, syncytiotrophoblasts express the virion receptor epidermal growth factor receptor (EGFR) but lack integrin coreceptors, and virion uptake occurs without replication. Focal infection can occur when transcytosed virions reach EGFR-expressing cytotrophoblasts that selectively initiate expression of alphaV integrin. In cell columns, proximal cytotrophoblasts lack receptors and distal cells express integrins alpha1beta1 and alphaVbeta3, enabling virion attachment. In the decidua, invasive cytotrophoblasts expressing coreceptors upregulate EGFR, thereby dramatically increasing susceptibility to infection. Our findings indicate that virion interactions with cytotrophoblasts expressing receptors in the placenta (i) change as the cells differentiate and (ii) correlate with spatially distinct sites of CMV replication in maternal and fetal compartments.  相似文献   

7.
92-kD type IV collagenase mediates invasion of human cytotrophoblasts   总被引:38,自引:3,他引:35       下载免费PDF全文
The specialized interaction between embryonic and maternal tissues is unique to mammalian development. This interaction begins with invasion of the uterus by the first differentiated embryonic cells, the trophoblasts, and culminates in formation of the placenta. The transient tumor-like behavior of cytotrophoblasts, which peaks early in pregnancy, is developmentally regulated. Likewise, in culture only early-gestation human cytotrophoblasts invade a basement membrane-like substrate. These invasive cells synthesize both metalloproteinases and urokinase-type plasminogen activator. Metalloproteinase inhibitors and a function-perturbing antibody specific for the 92-kD type IV collagen-degrading metalloproteinase completely inhibited cytotrophoblast invasion, whereas inhibitors of the plasminogen activator system had only a partial (20-40%) inhibitory effect. We conclude that the 92-kD type IV collagenase is critical for cytotrophoblast invasion.  相似文献   

8.
Cytotrophoblasts are specialized epithelial cells of the human placenta that differentiate to acquire tumor-like properties that allow them to invade the uterus. Concurrently, they develop endothelial-like characteristics. This transformation allows cytotrophoblasts to replace the maternal cells that line uterine vessels, thereby diverting maternal blood to the placenta. Previously, we showed that invading cytotrophoblasts secrete VEGF-C and PlGF, factors that regulate their acquisition of an endothelial-like phenotype. Here, we examined the cells' expression of angiopoietin ligands and their Tie receptors. The data show that cytotrophoblasts predominantly expressed Ang2. We also studied the paracrine functions of Ang2 and the VEGFs by culturing uterine microvascular endothelial cells in cytotrophoblast-conditioned medium, which supported their growth. Removal of VEGF-C, PlGF, and/or Ang2 from the medium caused a marked reduction in cell number due to massive apoptosis. We also assayed the angiogenic potential of cytotrophoblast-derived factors in the chick chorioallantoic membrane assay. The results showed that they stimulated angiogenesis to a level comparable to that of basic FGF. These data suggest that invasive human cytotrophoblasts use an unusual repertoire of factors to influence the angiogenic state of maternal blood vessels and that this cross talk plays an important part in the endovascular component of uterine invasion.  相似文献   

9.
Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing multi-color FISH-based technologies to score all 24 chromosomes in single cells within a three-day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found to be aneuploid, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate the feasibility of a full karyotype analysis of individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.  相似文献   

10.
The von Hippel-Lindau tumor-suppressor protein (pVHL) regulates the stability of HIF1 alpha and HIF2 alpha and thus is pivotal in cellular responses to changes in oxygen tension. Paradoxically, human cytotrophoblasts proliferate under hypoxic conditions comparable to those measured in the early gestation placenta (2% O(2)), but differentiate into tumorlike invasive cells under well-oxygenated conditions such as those found in the uterus. We sought to explain this phenomenon in terms of pVHL expression. In situ, pVHL immunolocalized to villous cytotrophoblast stem cells, and expression was enhanced at sites of cell column initiation; in both of these relatively hypoxic locations, cytoplasmic staining for HIF2 alpha was also detected. As cytotrophoblasts attached to and invaded the uterus, which results in their increased exposure to oxygen, pVHL staining was abruptly downregulated concordant with localization of HIF2 alpha to the nucleus. In vitro, hypoxia (2% O(2)) upregulated cytotrophoblast pVHL expression together with HIF2 alpha, which localized to the cytoplasm; culture under well-oxygenated conditions greatly reduced levels of both molecules. These results, together with the placental defects previously observed in VHL(-/-) mice, suggest that pVHL is a component of the mechanism that transduces local differences in oxygen tension at the maternal-fetal interface to changes in the biological behavior of cytotrophoblasts. Furthermore, these data provide the first example of oxygen-dependent changes in pVHL abundance.  相似文献   

11.
Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.  相似文献   

12.
13.
The human placenta arises from the zygote through single cell intermediates called cytotrophoblasts that in turn give rise to a syncytium. In culture, mononucleated cytotrophoblasts exhibit little, if any, cell division but are converted to multinucleated cells. Choriocarcinoma, the malignant tumor of placenta trophoblast, comprises a mixed population of dividing cellular intermediates that resemble cytotrophoblasts but are less differentiated. Because the choriocarcinoma intermediates arise from dividing cells, the tumor may contain one or more cell types in abundance not present in the population of isolated placental cells. To study placental differentiation through cell-cell interaction, choriocarcinoma cell lines were co-cultured with placenta-derived cytotrophoblasts, and placental hormone biosynthesis, as a marker of differentiation was examined. We reasoned that intermediates formed by the tumor might interact with and complement those intermediates in the placenta-derived cytotrophoblast population. Co-culturing either the JAr or JEG choriocarcinoma cell lines with cytotrophoblasts elevated the synthesis of the chorionic gonadotropin alpha and beta subunits 10-20 fold, and human placental lactogen 5-fold. The effect was specific for these trophoblast-derived cells, since comparable quantities of Chinese hamster ovary or HeLa cells did not affect the placental cytotrophoblast culture. Further experiments suggested that the source of enhanced synthesis was the cytotrophoblasts. We propose that an interaction between cytotrophoblasts and choriocarcinoma cells occurs, which results in an increased number of differentiating cytotrophoblasts. Such co-cultures may represent a model system for examining choriocarcinoma cell interaction with normal cells, a process known to occur in vivo. The data are also consistent with the hypothesis that the regulated chorionic gonadotropin production in the placenta is determined by interaction among trophoblast cells at different stages of differentiation.  相似文献   

14.
In humans, fetal cytotrophoblasts leave the placenta and enter the uterine wall, where they preferentially remodel arterioles. The fundamental mechanisms that govern these processes are largely unknown. Previously, we have shown that invasive cytotrophoblasts express several chemokines, as well as the receptors with which they interact. Here, we report that these ligand-receptor interactions stimulate cytotrophoblast migration to approximately the same level as a growth factor cocktail that includes serum. Additionally, cytotrophoblast commitment to uterine invasion was accompanied by rapid downregulation of EPHB4, a transmembrane receptor associated with venous identity, and upregulation of ephrin B1. Within the uterine wall, the cells also upregulated expression of ephrin B2, an EPH transmembrane ligand that is associated with arterial identity. In vitro cytotrophoblasts avoided EPHB4-coated substrates; upon co-culture with 3T3 cells expressing this molecule, their migration was significantly inhibited. As to the mechanisms involved, cytotrophoblast interactions with EPHB4 downregulated chemokine-induced but not growth factor-stimulated migration. We propose that EPHB4/ephrin B1 interactions generate repulsive signals that direct cytotrophoblast invasion toward the uterus, where chemokines stimulate cytotrophoblast migration through the decidua. When cytotrophoblasts encounter EPHB4 expressed by venous endothelium, ephrin B-generated repulsive signals and a reduction in chemokine-mediated responses limit their interaction with veins. When they encounter ephrin B2 ligands expressed in uterine arterioles, migration is permitted. The net effect is preferential cytotrophoblast remodeling of arterioles, a hallmark of human placentation.  相似文献   

15.
16.
17.
Epidermal growth factor (EGF) receptors were studied during the in vitro differentiation of human trophoblast cells from first- and third-trimester placentas. Cytotrophoblasts were isolated by enzymatic digestion and purified on a discontinuous Percoll gradient. As analyzed by flow cytometry, 5% of the cells are in the G2M phase in the early placenta and 0% in the term placenta. In culture, the cytotrophoblasts at both gestational ages flatten out, aggregate, and fuse together to form syncytiotrophoblasts. This in vitro morphological differentiation is associated with a threefold increase in the ability to bind specifically 125I-EGF. Trophoblastic cells from the term placenta have a significantly (p less than 0.005) higher receptor number (68.6 +/- 9.5 fmol/mg protein) for EGF after 2 days of culture than first-trimester cytotrophoblasts (35.8 +/- 2.3 fmol/mg protein). Scatchard plot analysis revealed two classes of binding sites with a similar affinity in both first-trimester and term placentas (9.5 x 10(9) M-1 for the high-affinity, 0.5 x 10(9) M-1 for the low affinity site). When 125I-EGF was affinity cross-linked to cytotrophoblasts, the receptors appeared as a specific band with a molecular weight of 180 kD in SDS-PAGE. This study demonstrates that the culture of cytotrophoblasts offer an appropriate model to study the modulation of EGF receptors.  相似文献   

18.
Cytotrophoblasts are the specialized epithelial cells of theplacenta. During the first trimester, a subpopulation of chorionicvillas cytotrophoblasts differentiates along an invasive pathwayand penetrates the maternal endo-metrium, decidua and spiralarterioles. Cytotrophoblast invasiveness declines rapidly duringthe second half of gestation. Isolated cytotrophoblasts of differentgestational ages retain this differential invasiveness in culture.To determine whether the properties of integrin receptors forextracellular matrix molecules differ between invasive and non-invasivecytotrophoblasts, detergent extracts of isolated cytotrophoblastsof different gestational ages, and of first-trimester villousfibroblasts, were immunoprecipitated with subunit-specific anti-  相似文献   

19.
The tumor suppressor protein BARD1, originally discovered as BRCA1-binding protein, acts in conjunction with BRCA1 as ubiquitin ligase. BARD1 and BRCA1 form a stable heterodimer and dimerization, which is required for most tumor suppressor functions attributed to BRCA1. In addition, BARD1 has BRCA1-independent functions in apoptosis, and a role in control of tissue homeostasis was suggested. However, cancer-associated mutations of BARD1 are rare; on the contrary, overexpression of truncated BARD1 was found in breast and ovarian cancer and correlated with poor prognosis. Here we report that human cytotrophoblasts, which show a strong similarity with cancer cells in respect of their invasive behavior and capacity of matrix metalloprotease production, overexpress isoforms of BARD1 derived from differential splicing. We demonstrate that expression of BARD1 and its isoforms is temporally and spatially regulated by human chorionic gonadotropin and by hypoxia, both factors known to regulate the invasive phase and proliferation of cytotrophoblasts. Interestingly, we found a subset of BARD1 isoforms secreted by cytotrophoblasts. BARD1 repression by siRNAs, mitigates the interference of cytotrophoblasts with cell adhesion of collagen matrix-dependent epithelial cells, suggesting a role of BARD1 isoforms in extracellular matrix remodelling and in cytotrophoblasts invasion.  相似文献   

20.
Human syncytiotrophoblasts are derived from villous cytotrophoblasts by cell fusion. Coincident with this morphologic transformation, trophoblasts acquire specific endocrine functions, including elaboration of chorionic gonadotropin (hCG). We wondered if syncytia formation was a prerequisite for biochemical differentiation or simply was one part of the differentiation program. By growing purified human cytotrophoblasts under serum-free conditions and manipulating the culture surface, we were able to disassociate morphologic from biochemical differentiation. We have shown previously (Endocrinology 1986, 118:1567) that human cytotrophoblasts grown in the presence of fetal calf serum flatten out, aggregate, and form functional syncytiotrophoblasts in vitro over 24-96 hr. Here we demonstrate that when grown in the absence of serum, the cells do not undergo these morphologic changes, but remain as individual spherical cells. If the culture surface was precoated with fibronectin or a variety of collagens, but not albumin, the cells regained their ability to flatten, aggregate, and form syncytia. Attachment to and syncytia formation on fibronectin was blocked by the addition of the R-G-D-S-containing peptide, Gly-Arg-Gly-Asp-Ser-Pro. Attachment to and syncytia formation on type I collagen was blocked by anti-human fibronectin F(ab')2 fragments, while association with type IV collagen was not affected by this antibody, suggesting that fibronectin mediates trophoblast association with type I collagen, but not type IV. Although syncytia formation did not occur when cytotrophoblasts were cultured under serum-free conditions in the absence of ECM proteins, biochemical differentiation was not affected. These cells secreted hCG at the same rate under serum-free conditions whether they were plated on plastic only--which prevented syncytia formation--or fibronectin, laminin or, type IV collagen--which allowed syncytia formation to occur. Furthermore, cytoplasmic differentiation in the absence of syncytia formation was confirmed by performing transmission electron microscopy on cytotrophoblasts grown under serum-free conditions in the presence of 8-bromo-cAMP. We conclude that syncytia formation is not a prerequisite for biochemical differentiation, but simply part of the trophoblast differentiation program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号