首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Allosteric effects of erythrocytic NTP and proton concentrations on cathodic eel Hb were investigated by precise measurement of Hb-O2 equilibria (including extreme saturation values) and analysis in terms of the MWC two-state model and the Adair four-step oxygenation theory. Stripped cathodic Hb shows a reverse Bohr effect and high sensitivities to ATP and GTP that extend to high pH values (>8.5). A decrease in pH raises K T and lowers the allosteric constant L; compared to opposite effects in normal Bohr effect Hbs. Phosphates even at low concentrations (GTP/Hb=0.5) annihilate the reverse Bohr effect. GTP exerts a reater effect than ATP due to greater changes in K T and L, and NTP slightly reduces K R. In the absence of NTP, about 1.1 protons are released on deoxygenation at pH 8.15 (where most protons are released), indicating a pK value of the reverse Bohr group of approximately 8.2 (higher in oxy-Hb and lower in deoxy-Hb). The pH and NTP dependence of the Adair association constants and calculated fractional populations of Hb molecules in different oxygenation stages show that NTP effectors stabilise the T structure and postpone the T-R transition, whereas protons in the absence of NTP have the opposite effect. A molecular mechanism for the reverse Bohr effect is suggested.Abbreviations DPG 2,3 diphosphoglycerate - EPLC fast protein liquid chromatography - Hb hemoglobin - HEPES N-2-hydroxymethyl-piperazine-N-2-ethanesulfonic acid - K T and K R O2 association equilibrium constants of Hb in the deoxy- and oxy-states, respectively - k 1, k 2, k 3 and k 4 Adair affinity constants for binding of the four O2 molecules to Hb - L allosteric constant - NTP nucleoside triphosphate - P m medium O2 pressure - n 50 Hill's cooperativity coefficient at P 50 - P 50 half-satutarion O2 tension - TRIS tris(hydroxymethyl)aminomethane  相似文献   

2.
D B?ning  G Enciso 《Blut》1987,54(6):361-368
In blood of 21 anemic patients and 8 normal subjects (N) three oxygen dissociation curves each were measured at different pH values to calculate Bohr coefficients after acidification with CO2 (BCCO2) or fixed acid (BCFA), and other important parameters of oxygen affinity. The patients had either low hemoglobin or red cell production (L: n = 11, 7.3 g/dl Hb) or high erythrocyte production combined with high loss (H: n = 10, 7.8 g/dl Hb). The standard half saturation pressure P50 (pH 7.4, 37 degrees C) was equally elevated in both anemic groups (L: 30.5, H: 30.8, N: 26.7 mmHg), as well as the diphosphoglycerate concentration (DPG) (L: 18.7, H: 18.6, N: 12.7 mumol/g Hb). The red cell pH of the anemics was lower than for the N (approximately 0.045 units) causing part of the difference in P50. Hill's "n" tended to high values in the anemics except at low O2-saturation in the H. For BCCO2 no significant difference among the groups was observed. BCFA, however, increased in the H at low SO2 compared to the N and L. The cause for most of the changes in hemoglobin oxygen affinity in anemics was the high [DPG]. The combination of high P50 and high "n" value as in the L seems to be most advantageous for tissue oxygenation.  相似文献   

3.
The O2 binding properties of bovine Hb were examined. The increase in Cl- and DPG concentration enhanced P50. A reduction in n(max) was observed at high Cl- concentration, while DPG had little effect on n(max). An increase in Cl- concentration enhanced the Bohr effect, the magnitude of which reached a maximum at 0.1 M Cl- and 20 degrees C. This concentration is nearly equal to that at the highest slope of the log P50 vs. log [Cl-] plot, and also equal to the physiological Cl- concentration (0.1 M) of bovine blood. Furthermore, the influence of Cl- concentration on the Bohr effect is independent of temperature. On the other hand, in the absence of Cl-, bovine Hb is sensitive to DPG; an increase in DPG concentration enhanced the Bohr effect, which reached a maximum at 3 mM DPG and 20 degrees C. This concentration is nearly equal to that at the highest slope of the log P50 vs. log [DPG] plot. At low DPG concentrations, the DPG effect on the Bohr effect became small with increasing temperature, whereas at high DPG concentrations, the DPG effect was insensitive to temperature changes. At the physiological concentration of DPG (0.5 mM), increases in both Cl- concentration and temperature diminished the DPG effect. At the physiological concentrations of Cl- and DPG, the Bohr effect was -0.36 at 37 degrees C. The deltaH value at the physiological concentrations of Cl- and DPG was approximately -5.8 kcal/mol at pH 7.4. These results indicate that Cl- and temperature are important determinants of the O2 binding properties of bovine Hb.  相似文献   

4.
The Gymnothorax unicolor hemoglobin system is characterized by two components, called cathodic and anodic on the basis of their isoelectric point, which were separated by ion-exchange chromatography. The oxygen-binding properties of the purified components were studied in the absence and presence of chloride and/or GTP or ATP in the pH range 6.5-8.0. Stripped cathodic hemoglobin showed a small reverse Bohr effect, high oxygen affinity, and low co-operativity; the addition of chloride only caused a small decrease in oxygen affinity. In the presence of GTP or ATP, the oxygen affinity was dramatically reduced, the co-operativity increased, and the reverse Bohr effect abolished. Stripped anodic hemoglobin is characterized by both low oxygen affinity and co-operativity, and displayed a normal Bohr effect; the addition of chloride increased co-operativity, whereas ATP and GTP significantly modulated oxygen affinity at acidic pH values, enhancing the Bohr effect and giving rise to the Root effect. The complete amino-acid sequences of the alpha and beta chains of both hemoglobins were established; the molecular basis of the functional properties of the hemoglobins is discussed in the light of the primary structure and compared with those of other fish hemoglobins.  相似文献   

5.
Hemoglobin Barcelona was discovered by routine electrophoresis in a Spanish family showing a mild polycythemia. Red blood cells of the propositus which contained 37% of the abnormal hemoglobin had an increased oxygen affinity and a lowered alkaline Bohr effect. After purification, functional studies of Hb2 Barcelona (pI = 7.11) demonstrated a twofold increase in oxygen affinity and a moderate reduction in heme-heme interaction compared to normal HbA. Its reaction towards anionic cofactors (Cl?, DPG or IHP) was similar to that of HbA. Reactivity of the sulphydryl groups (cysteine-β93) was increased in Hb Barcelona both in the deoxy and fully liganded forms, and in the absence as well as in the presence of IHP. By three different methods (the pH-dependence of log P50, the direct proton titration technique and the measurement of the ΔpIdeox-ox) by isoelectric focusing) all in the absence of phosphate ions, Hb Barcelona was found to have a 20 to 30% reduction of the alkaline Bohr effect. This was most pronounced in the alkaline pH range. The reduction was less than expected for the loss of the important intrachain salt-bridge Asp-β94 → His-β146 considered to be responsible for 40 to 60% of the whole T → R Bohr effect (Perutz et al., 1980). This suggested that in Hb Barcelona, His-β146 could be in weak electrostatic interaction with the neighboring Glu-β90 in the deoxy form. It is concluded that the presence of the oxygen-linked Asp-β94 → His-β146 salt-bridge in HbA is a prerequisite for the full expression of the alkaline Bohr effect and heme-heme interaction.  相似文献   

6.
The effect of 2,3-diphosphoglycerate (DPG) on the Bohr effect of human hemoglobin has been studied by means of hydrogen ion titration techniques. The results indicate a) that both the acid and the alkaline Bohr effect are equally affected, b) that the DPG binding to deoxyhemoglobin (Hb) is much stronger than to carboxyhemoglobin (HbCO) and c) that Hb binds effectively one DPG molecule. The effect on the Bohr effect can roughly be described by assuming that upon binding two groups per tetramer change their pK from 6.8 to 7.8 and two others from 6.8 to 5.8. These groups very probably are the imidazole groups of the two histidines H21 (143)β and the two phosphate groups of DPG (second dissociation). From the experiments a value for the dissociation constant K of the Hb-DPG complex of about 10−5 M−1 could be estimated at pH 6.2 and pH 7.5.  相似文献   

7.
The main functional parameters of blood stored at +4 degrees C in ACD, according to the common transfusional practice, have been carefully followed in the course of 40 days. The expected depletion of DPG takes place within 10 days, but apparently, no increase of the Hb affinity towards oxygen is observed in this period (or later), because pH lowering acts in the opposite direction during the same time. However, the intrinsic increased affinity of Hb is promptly revealed if the "actual" pHs are corrected at the standard value of 7.4, and/or are extrapolated at this pH from Bohr effect.  相似文献   

8.
9.
Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O(2) affinity compared with normal cells (P(50) = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O(2) affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO(2) , decreasing the rate approximately twofold. These kinetic data help explain the high O(2) affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure.  相似文献   

10.
M F Colombo  F A Seixas 《Biochemistry》1999,38(36):11741-11748
The effect of anions on the stability of different functional conformations of Hb is examined through the determination of the dependence of O(2) affinity on water activity (a(w)). The control of a(w) is effected by varying the sucrose osmolal concentration in the bathing solution according to the "osmotic stress" method. Thus, the hydration change following Hb oxygenation is determined as a function of Cl(-) and of DPG concentration. We find that only approximately 25 additional water molecules bind to human Hb during the deoxy-to-oxy conformation transition in the absence of anions, in contrast with approximately 72 that bind in the presence of more than 50 mM Cl(-) or more than 15 microM DPG. We demonstrate that the increase in the hydration change linked with oxygenation is coupled with anion binding to the deoxy-Hb. Hence, we propose that the deoxy-Hb coexists in two allosteric conformations which depend on whether anion is bound or not: the tense T-state, with low oxygen affinity and anion bound, or a new allosteric P-state, with intermediate oxygen affinity and free of bound anions. The intrinsic oxygen affinity of this unforeseen P-state and the differential binding of Cl(-), DPG, and H(2)O between states P and T and P and R are characteristics which are consistent with those expected for a putative intermediate allosteric state of Hb. These findings represent a new opportunity to explore the structure-function relationships of hemoglobin regulation.  相似文献   

11.
Effect of hydrostatic pressure (HP) on whole blood (WB) or erythrocyte suspension hemoglobin (Hb) O2 affinity has been studied using newly developed techniques. O2 partial pressure at which hemoglobin is half-saturated with O2 (P50) measurements were made at 5 HP (1, 26, 51, 76, and 126 ATA) on thin films of human WB or erythrocytes at 37 degrees C. CO2 partial pressure of WB was either 28 or 57 Torr (film pH 7.51 or 7.31). HP increased affinity of erythrocytes and WB. For erythrocytes in tris(hydroxymethyl)aminomethane buffer, the ratio (r) of P50 (1 ATA)/P50 (51 ATA) was 1.089 (P less than 0.01) at pH 7.0. WB P50 decreased with HP at a rate of -3.3 X 10(-2) Torr X atm-1; change in P50 at higher HP vs. 1 ATA was highly significant (P less than 0.01). No effect of HP was seen on the CO2 Bohr coefficient. Inert gas choice, N2 vs. helium (He), had no effect. Measurement of decrease of P50 with HP at 76 ATA in hemolyzed WB gave an r of 1.15, as great or greater than that found in WB, indicates that Donnan equilibrium alteration is not involved. No effect of HP was found in WB on the ratio of P50 of erythrocytes with normal (5 mmol/l erythrocytes) 2,3-diphosphoglycerate (DPG) to P50 of erythrocytes with less than 5% of normal DPG; i.e., no effect of pressure was seen on the independent influence of DPG on P50. WB measurements of Hb O2 uptake under simulated physiological conditions are characterized by a net decrease in partial molal volume on oxygenation of 30-35 ml/mol Hb4.  相似文献   

12.
Oxygen equilibrium studies of purified hemoglobin Saint Mandé (Hb SM) [beta 102 (G4) Asn----Tyr] reveal a decreased oxygen affinity and cooperativity but to a lesser extent than found for Hb Kansas (beta 102 Thr). The low affinity of Hb SM depends on environmental conditions: eliminating chloride or raising the pH greatly elevated the ratio of p50 of Hb SM to that of Hb A. The alkaline Bohr effect is reduced by about 40%. The effects of anions (chloride, organophosphates) binding to deoxy Hb SM are also reduced. These data indicate that the functional properties of Hb SM are intermediary between Hb A and Hb Kansas. In addition, molecular graphics modeling of Hb SM in the oxy and deoxy structures indicate the possibility of a new hydrogen bond in the T state between beta(1)102 Tyr and alpha(2)42 Tyr. Stabilisation of the T state in this manner is a plausible explanation for several of the effects observed.  相似文献   

13.
Human erythrocyte phosphofructokinase was purified 150 fold by DEAE cellulose adsorption and ammonium sulfate precipitation.At pH 7,5 the enzyme exhibits allosteric kinetics with respect to ATP, fructose 6 phosphate, and Mg2+.ATP at high concentration acted as an inhibitor and ADP, 5′AMP, 3′,5′, AMP, acted as activators. Both effectors seemed to decrease the homotropic interactions beetween the fructose 6 phosphate molecules.The activators increased the affinity of phosphofructokinase for the substrate (F6P), the inhibitor decreased it.These ligands had no effect on the maximum velocity of the reaction except in the case of ADP.Interactions between the substrates and the effector ligands on the enzyme were considered in terms of the Monod - Changeux - Wyman model for allosteric proteins.With GTP and ITP, no inhibition was observed. At saturing concentration of GTP, ATP still inhibited phosphofructokinase.Both 3′5′ AMP and fructose 6 phosphate increased the concentration of ATP required to produce an inhibition of 50 %.Citrate, like ATP, inhibited phosphofructokinase by binding most likely at the same allosteric site. Erythrocyte phosphofructokinase is inhibited by 2–3 DPG.The study of the relation log V max = f (pH) suggested, that the active center contains at least one imidazole and one sulfhydryl group.  相似文献   

14.
The mutant haemoglobin Hb M Iwate alpha 2Mmet87His leads to Tyr beta 2, is characterized by a stable T structure and a low ligand affinity. Sigmoidal CO-binding isotherms of symmetrical shape with Hill coefficients of n = 1.4 at pH 6 to n = 1.9 at pH 10 and the differences in the mean affinity (PCO(1/2)) and the affinity of the first ligand-binding beta subunit (1/L1 greater than Pco(1/2)) are the evidence for the cooperativity. The comparison of the Bohr effects of the two valency hybrid states (alpha 2Mmet beta met beta deoxy alpha 2Mmet beta 2deoxy) in the absence of and in the presence of polyphosphates leads to an indirect proof of pH-dependent subunit-subunit interaction. Inositol hexaphosphate-binding suppresses cooperativity in the pH range 5.5-8 (n = 1). Above pH 8 hte cooperativity increases to a final value of n = 1.9 at pH greater than 10, which is identical to that of stripped Hb M Iwate. The CO binding to the first binding site exhibits a Bohr effect. Polyphosphate anions have no influence on the CO binding of the first binding site. The heterotropic effects are discussed as intrachain effects (Bohr effect of the first binding site) and interchain effects (Bohr effect of Pco(1/2); influence of polyphosphates).  相似文献   

15.
Hemoglobin (Hb) Chico (Lys beta 66----Thr at E10) has a diminished oxygen affinity (Shih, D. T.-b., Jones, R. T., Shih, M. F.-C., Jones, M. B., Koler, R. D., and Howard, J. (1987) Hemoglobin 11, 453-464). Our studies show that its P50 is about twice that of Hb A and that its cooperativity, anion, and Bohr effects between pH 7 and 8 are normal. The Bohr effect above pH 8 is somewhat reduced, indicating a small but previously undocumented involvement of the ionic bond formed by Lys beta 66 in the alkaline Bohr effect. Since the oxygen affinity of the alpha-hemes is likely to be normal, that of the beta-hemes in the tetramer is likely to be reduced by the equivalent of 1.2 kcal/mol beta-heme in binding energy. Remarkably, both initial and final stages of oxygen binding to Hb Chico are of lowered affinity relative to Hb A under all conditions examined. The isolated beta chains also show diminished oxygen affinity. In T-state Hb A, Lys(E10 beta) forms a salt bridge with one of the heme propionates, but comparison with other hemoglobin variants shows that rupture of this bridge cannot be the cause of the low oxygen affinity. X-ray analysis of the deoxy structure has now shown that Thr beta 66 either donates a hydrogen bond to or accepts one from His beta 63 via a bridging water molecule. This introduces additional steric hindrance to ligand binding to the T-state that results in slower rates of ligand binding. We measured the O2/CO partition coefficient and the kinetics of oxygen dissociation and carbon monoxide binding and found that lowered O2 and CO affinity is also exhibited by the R-state tetramers and the isolated beta chains of Hb Chico.  相似文献   

16.
Some insects have a globin exclusively in their fast-growing larval stage. This is the case in the 4th-instar larva of Tokunagayusurika akamusi, a common midge found in Japan. In the polymorphic hemoglobin comprised of 11 separable components, hemoglobin VII (Ta-VII Hb) was of particular interest. When its ferric met-form was exposed to pH 5.0 from 7.2, the distal histidine was found to swing away from the E7 position. As a result, the iron(III) was converted from a hexacoordinate to a pentacoordinate form by a concomitant loss of the axial water ligand. The corresponding spectral changes in the Soret band were therefore followed by stopped-flow and rapid-scan techniques, and the observed first-order rate constants of k(out) = 25 s(-1) and kin = 128 s(-1) were obtained for the outward and inward movements, respectively, of the distal histidine residue in 0.1 m buffer at 25 degrees C. For O2 affinity, Ta-VII Hb showed a value of P50 = 1.7 Torr at pH 7.4, accompanied with a remarkable Bohr effect (deltaH+ = -0.58) almost equal to that of mammalian hemoglobins. We have also investigated the stability property of Ta-VII HbO2 in terms of the autoxidation rate over a wide range of pH from 4 to 11. The resulting pH-dependence curve was compared with those of another component Ta-V HbO2 and sperm whale MbO2, and described based on a nucleophilic displacement mechanism. In light of the O2 binding affinity, Bohr effect and considerable stability of the bound O2 against acidic autoxidation, we conclude that T. akamusi Hb VII can play an important role in O2 transport and storage as the major component in the larval hemolymph.  相似文献   

17.
The Bohr effect was measured in normal whole blood and in blood with low DPG concentration as a function of oxygen saturation. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HC1 at constant PCO2 (fixed acid Bohr effect). At nornal DPG concentration CO2 Bohr effect was -0.52 at 50% blood oxygen saturation, increasing in magnitude at lower saturation and decreasing in magnitude at higher saturation. In DPG depleted blood with base excess (BE) similar to 0 meq/1, there was similar dependence of CO2 Bohr effect on oxygen saturation. At BE similar to -10 meq/1, influence of saturation was comparable, but the magnitude of the Bohr effect was markedly increased at all saturations. Fixed acid Bohr effect at normal DPG concentration was -0.45 at saturations of 50-90% but decreased at lower saturations. In DPG-depleted blood fixed acid Bohr effect averaged about -0.33 with minimal variation with saturation. Influence of DPG on oxygen affinity was greater at intermediate saturations and less at saturations below 20% and above 80%. Effect of CO2, independent of pH, was many fold greater at lower oxygen saturations than at higher saturations. These results support the suggestion that the alpha chain of hemoglobin is the site of the initial oxygenation reaction. Physiologically they indicate that the relative contribution of CO2 and fixed acid, as well as the level of oxygen saturation and DPG concentration, may be important in determining PO2 of capillary blood and resulting oxygen delivery.  相似文献   

18.
We examined for the first time the hemoglobin components of the blood of the Australian lungfish, Neoceratodus forsteri and their functional responses to pH and the allosteric modulators adenosine triphosphate (ATP), guanosine triphosphate (GTP), 2,3-bisphosphoglyceric acid (BPG) and inositol hexaphosphate (IHP) at 25 degrees C. Lysates prepared from stripped, unfractionated hemolysate produced sigmoidal oxygen equilibrium curves with high oxygen affinity (oxygen partial pressure required for 50% hemoglobin saturation, p(50)=5.3 mmHg) and a Hill coefficient of 1.9 at pH 7.5. p(50) was 8.3 and 4.5 mmHg at pH 6 and 8, respectively, which corresponded to a modest Bohr coefficient (Delta log p(50)/Delta pH) of -0.13. GTP increased the pH sensitivity of oxygen binding more than ATP, such that the Bohr coefficient was -0.77 in the presence of 2 mmol L(-1) GTP. GTP was the most potent regulator of hemoglobin affinity, with concentrations of 5 mmol L(-1) causing an increase in p(50) from 5 to 19 mm Hg at pH 7.5, while the order of potency of the other phosphates was IHP>ATP>BPG. Three hemoglobin isoforms were present and each contained both alpha and beta chains with distinct molecular weights. Oxygen affinity and pH-dependence of isoforms I and II were essentially identical, while isoform III had a lower affinity and increased pH-dependence. The functional properties of the hemoglobin system of Neoceratodus appeared consistent with an active aquatic breather adapted for periodic hypoxic episodes.  相似文献   

19.
R E Weber  R M Wells  S Tougaard 《Life sciences》1983,32(18):2157-2161
The O2 affinity of "stripped" (cofactor-free) hemoglobin (Hb) of the elasmobranch, Squalus acanthias is decreased by ATP, the main erythrocytic phosphate cofactor but increased by urea at physiological concentration. When both compounds are present, as in life, urea decreases the ATP sensitivity, indicating that previous Hb oxygenation studies in the absence of urea overestimate the modulator role of phosphate cofactors in sharks. Whereas ATP decreases the O2 association equilibrium constant of the deoxygenated pigment, urea raises those of both the deoxy and the oxygenated states. Possible mechanisms for the urea-protein interactions i.e. binding at carboxy-termini or carbamylation of amino-termini of the protein chains, are discussed.  相似文献   

20.
D'Avino R  De Luca R 《Proteins》2000,39(2):155-165
Three-dimensional structural models of the hemoglobin (Hb 1) of the Antarctic fish Trematomus newnesi were built by homology modelling, using as template the X-ray crystallographic structures of Trematomus (previously named Pagothenia) bernacchii Hb 1, both in R and T state. The Hbs of these two fishes, although showing remarkably different oxygen binding properties, differ only by 4 residues in the alpha chain (142 aa) and 10 residues in the beta chain (146 aa). T. newnesi Hb1 R-state model, essentially performed as a quality control of the adopted modelling procedure, showed a good correspondence with the crystallographic one. Modelling of T. newnesi Hb1 in the T state was performed taking into account that the proton uptake by aspartate residues, proposed to be responsible for half of the Root effect in T. bernacchii Hb 1 (showing sharp pH dependent oxygen affinity and T-state overstabilization at low pH, i. e. Bohr and Root effect), does not occur in T. newnesi Hb1 (having nearly pH-independent lower oxygen affinity). Comparison with the template structure (submitted to the same minimization procedure) indicates that, in T. newnesi Hb1 T-state model, the substitution of Ile for Thr in 41 C6, in central position of the switch region, induces at the alpha(1)beta(2) interface structural modifications able to hamper the protonation. Similar modifications are also found in T. bernacchii Hb 1 modelled in the T state with the single substitution Thr-->Ile in 41alpha. These models also suggest that the lower oxygen affinity observed in T. newnesi Hb1 is related to structural differences at the alpha(1)beta(2) interface leading to a more stable low-affinity T state. Proteins 2000;39:155-165.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号