首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 375 毫秒
1.
为研究额叶神经元对躯体痛、热刺激出现反应的机能意义,设计了痛、热延缓辨别作业对猕猴进行实验。痛和热仅在暗示期给予,要求动物对此不立即作出行为反应。而是暂时记住这个信号,等到行动期再作出反应。待作业正确率连续三天达90%以上,记录额叶神经元和两侧上肢肌肉的电活动.以观察神经元活动与信号刺激以及肌肉活动之间的关系。在记录的142个作业相关神经元中,与痛、热刺激相关者87个(66.4%)。其中22个仅对痛刺激、18个仅对热刺激起反应,47个对痛、热刺激都起反应(其中4个反应方向相反)。此外,有21个对痛、热、视都出现反应。其余仅对视觉刺激起反应。这些神经元主要位于额叶弓状沟上支内侧,包括前额叶和运动前区皮层。在两侧上肢12块肌肉中,除操作侧指总伸肌、尺侧腕屈肌和桡侧腕屈肌在压放杠杆时,可记录到短暂的肌电活动外,在作业的其它时期和其它肌肉均未记录到规律的肌电活动。这表明痛热刺激在暗示期引起的神经元反应与行为动作的发动没有直接关系,从而支持关于额叶皮层这一区域的神经元在对刺激物信号意义的辨别机制中,可能起着重要作用的假说。  相似文献   

2.
Extracellular recordings were used to characterize responses to cutaneous mechanical stimulation of 78 neurons in the rat nucleus submedius (SM). Thirty-nine of these units were activated by some type of cutaneous mechanical stimulation. Eighteen cells were activated exclusively by noxious stimuli. In 13 of these cells, responses were of swift onset and relatively rapid termination following stimulus application. In contrast, in three neurons responses were delayed both in onset and termination, and in two the response was immediate, but the markedly increased evoked activity outlasted stimulus application by 13 min. Receptive fields (RFs) of these nociceptive neurons were generally large, although none were bilateral. Four SM neurons were activated by innocuous stimuli, but their maximal response was obtained only after noxious stimulation. Responses of all of these neurons were of immediate onset and recovery, and their RFs were large (two were bilateral). Twelve SM neurons were activated maximally by innocuous stimuli. Responses of seven of these cells were immediate in onset and termination, while that of three were delayed in both onset and termination. Two of the 12 innocuous-only neurons quickly became unresponsive to repeated stimulus applications, and could be reactivated only after a rest period during which no stimuli were applied. RFs of these units were also generally large, and in three cases were bilateral. Five SM neurons responded by decreasing, or completely ceasing, their firing subsequent to noxious-only (n = 2), or innocuous-only (n = 3) stimulation. Four of these units had large RFs (two were bilateral). The remaining 39 SM neurons could not be activated by any type of mechanical cutaneous stimulation we tried.

Electrical stimulation of the ventrolateral orbital cortex (VLO) was employed to examine frontal cortical projections of 21 SM neurons. Ten of these units were activated, although all of them synaptically rather than antidromically, and two were inhibited. There was no clear-cut relationship between neuronal location, physiological type, RF site, or VLO stimulation effects among the 39 SM neurons.

These results provide further support for the involvement of SM neurons in nociceptive information signaling, and suggest additionally that the role of the nucleus is not limited to nociception but encompasses a wider range of cutaneous sensations.  相似文献   

3.
在猕猴执行延缓辨别作业和单纯辨别作业时,观察了与作业无关的新异刺激对额叶神经元延缓期放电的影响。在这两种作业中,延缓期在1—4s之间随机变化。此时,动物必须高度注意信号的变化,稍不注意即导致操作错误。此外,在延缓辨别作业中,动物在延缓期还要暂时记住暗示期的信号,单纯辨别作业则无此要求。在203个与作业相关的神经元中,有70个神经元在延缓期出现放电频率变化,其中见于延缓辨别作业者41个,见于单纯辨别作业者29个。实验结果表明,在这两种作业的延缓期所出现的神经元放电增多的反应,有着许多相同的特点。与课题无关的声、光、触、痛等刺激引起分心时,神经元的延缓期反应出现明显的变化,随之出现操作错误。多数神经元的反应受到抑制,但也有出现反应增强者,而且同一神经元对不同感觉模式的无关刺激可出现不同的效应,表现出不同程度的感觉模式特异性。此外,无关刺激在延缓期和在测试间歇期可产生不同甚至相反的效应。上述在延缓期出现反应的神经元主要位于额叶弓状沟上支内侧部的一定范围内。本文对实验结果进行了讨论,认为额叶神经元的延缓期反应,可能在很大程度上与注意有关。额叶神经元感觉模式各种程度的特异性可能是注意的通道选择性的神经基础。额叶的背内侧部,包括前额叶后部和运动前区前部  相似文献   

4.
猕猴额叶神经元视辨别机能可塑性的研究   总被引:1,自引:1,他引:0  
刘觐龙  宿双宁 《生理学报》1989,41(5):504-511
我们曾经提出,额叶神经元的反应,主要不是取决于刺激物的物理属性,而是与信号意义有密切的关系。为了验证这一看法,设计了两套作业,即视延缓辨别作业(作业Ⅰ)和视辨别反应作业(作业Ⅰ),对4只成年猕猴进行实验。两套作业都由1—4期组成,在第2期都有伪随机出现的红绿灯光信号,在第3期都要求动物密切注意随后的灯光信号变化。但是,作业Ⅰ要求动物对第2期出现的红绿灯光进行辨别,作业Ⅰ则要求对第4期的红绿灯光进行辨别。待动物学会作业,正确率达90%以上,在动物进行作业的同时引导额叶神经元放电。共记录作业相关神经元163个。其中作业Ⅰ98个,作业Ⅱ 65个。在作业Ⅰ中,神经元的反应多数出现在第2、3期,占该作业反应总数的70%。而在作业Ⅱ中,反应多数出现在第3、4期,也占该作业反应总数的70%。其次,作业Ⅰ第2期的神经元反应绝大多数对红、绿灯光有明显的特异性,而作业Ⅱ第2期的则没有,只有第4期的反应才有明显的特异性。本实验结果进一步支持了我们的上述看法,并且表明,额叶神经元对信号的反应主要是在学习中逐渐形成的,有很大的可塑性。  相似文献   

5.

Background

Pain is difficult to assess due to the subjective nature of self-reporting. The lack of objective measures of pain has hampered the development of new treatments as well as the evaluation of current ones. Functional MRI studies of pain have begun to delineate potential brain response signatures that could be used as objective read-outs of pain. Using Diffuse Optical Tomography (DOT), we have shown in the past a distinct DOT signal over the somatosensory cortex to a noxious heat stimulus that could be distinguished from the signal elicited by innocuous mechanical stimuli. Here we further our findings by studying the response to thermal innocuous and noxious stimuli.

Methodology/Principal Findings

Innocuous and noxious thermal stimuli were applied to the skin of the face of the first division (ophthalmic) of the trigeminal nerve in healthy volunteers (N = 6). Stimuli temperatures were adjusted for each subject to evoke warm (equivalent to a 3/10) and painful hot (7/10) sensations in a verbal rating scale (0/10 = no/max pain). A set of 26 stimuli (5 sec each) was applied for each temperature with inter-stimulus intervals varied between 8 and 15 sec using a Peltier thermode. A DOT system was used to capture cortical responses on both sides of the head over the primary somatosensory cortical region (S1). For the innocuous stimuli, group results indicated mainly activation on the contralateral side with a weak ipsilateral response. For the noxious stimuli, bilateral activation was observed with comparable amplitudes on both sides. Furthermore, noxious stimuli produced a temporal biphasic response while innocuous stimuli produced a monophasic response.

Conclusions/Significance

These results are in accordance with fMRI and our other DOT studies of innocuous mechanical and noxious heat stimuli. The data indicate the differentiation of DOT cortical responses for pain vs. innocuous stimuli that may be useful in assessing objectively acute pain.  相似文献   

6.
Extracellular recordings were used to characterize responses to cutaneous mechanical stimulation of 78 neurons in the rat nucleus submedius (SM). Thirty-nine of these units were activated by some type of cutaneous mechanical stimulation. Eighteen cells were activated exclusively by noxious stimuli. In 13 of these cells, responses were of swift onset and relatively rapid termination following stimulus application. In contrast, in three neurons responses were delayed both in onset and termination, and in two the response was immediate, but the markedly increased evoked activity outlasted stimulus application by 13 min. Receptive fields (RFs) of these nociceptive neurons were generally large, although none were bilateral. Four SM neurons were activated by innocuous stimuli, but their maximal response was obtained only after noxious stimulation. Responses of all of these neurons were of immediate onset and recovery, and their RFs were large (two were bilateral). Twelve SM neurons were activated maximally by innocuous stimuli. Responses of seven of these cells were immediate in onset and termination, while that of three were delayed in both onset and termination. Two of the 12 innocuous-only neurons quickly became unresponsive to repeated stimulus applications, and could be reactivated only after a rest period during which no stimuli were applied. RFs of these units were also generally large, and in three cases were bilateral. Five SM neurons responded by decreasing, or completely ceasing, their firing subsequent to noxious-only (n = 2), or innocuous-only (n = 3) stimulation. Four of these units had large RFs (two were bilateral). The remaining 39 SM neurons could not be activated by any type of mechanical cutaneous stimulation we tried. Electrical stimulation of the ventrolateral orbital cortex (VLO) was employed to examine frontal cortical projections of 21 SM neurons. Ten of these units were activated, although all of them synaptically rather than antidromically, and two were inhibited. There was no clear-cut relationship between neuronal location, physiological type, RF site, or VLO stimulation effects among the 39 SM neurons. These results provide further support for the involvement of SM neurons in nociceptive information signaling, and suggest additionally that the role of the nucleus is not limited to nociception but encompasses a wider range of cutaneous sensations.  相似文献   

7.
The hands of 14 normal humans were used to determine the somatotopic organization of the modulation of warmth sensation and heat pain by different forms of cutaneous stimuli. Test stimuli were 5-sec heat pulses ranging from 36° to 51°C, delivered to the fingerpads of digits 1, 2, 4, and 5 with a contact thermode. Conditioning stimuli (15 sec) bracketed the test stimuli and included vibration, noxious and innocuous heat, cold, and electrical pulses delivered to the fingerpads of digits that were adjacent or nonadjacent to the tested digits. Noxious (48° ± 1.3°C), but not innocuous (43°C), heat stimuli increased the perceived magnitude estimation of innocuous test stimuli (36–43°C) by 20–37% when delivered to adjacent, but not to nonadjacent, digits. No other conditioning stimuli had any effect on the intensity of warmth perception. In contrast, both noxious and innocuous heat or electrical conditioning reduced the magnitude estimation of noxious (50–5°C), but not innocuous, test pulses by 12–22% when delivered to adjacent digits. Conditioning of nonadjacent digits was significantly less effective. The analgesic effects of noxious and innocuous conditioning were approximately equal. Vibratory (120 Hz, 3.5 μm) and cold (15°C) conditioning stimuli were ineffective. The results are consistent with a dermatomal somatotopic organization of tactile and heat modulatory influences on warmth sensation and heat pain. The results further suggest that the neural mechanisms subserving warmth mediate a negative feedback influence on heat pain intensity.  相似文献   

8.
Unit and network activity of neurons in the visual, sensorimotor, and frontal cortical areas and dorsal striatum was investigated in cats under conditions of choice of the reinforcement value depending on its delay. The animals did not differ from each other in behavior. After immediate or delayed responses cats got low- or highly-valuable reinforcement, respectively. Single-unit activity in the visual and sensorimotor cortical areas and dorsal striatum was similar during performance of immediate and delayed responses. However, significant inhibition was observed in the frontal neurons during the delay period. The network activity of visual and frontal cortex displayed smaller number of interneuronal interactions during delayed responses as compared to immediate reactions. The network activity of neurons in the brain structures under study pointed to the interstructural interaction, but only during delayed reactions, steady interneuronal communication was observed between the frontal cortex and dorsal striatum. Thus, both types of estimation of cellular activity revealed differences in the ensemble organization during different types of behavior and showed specific reactions of neuronal ensembles.  相似文献   

9.
J. Davies  A. Dray 《Life sciences》1980,26(22):1851-1856
The effects of systemically administered substance P were examined on the responses induced by noxious (radiant heat) and non-noxious (air jets) peripheral stimuli in dorsal horn neurons of the feline spinal cord. Substance P produced a significant fall in arterial blood pressure and selectively enhanced responses to noxious heat stimulation. Other vasoactive substances administered systemically caused either selective increases or decreases in noxious heat induced responses which coincided with decreases or increases in systemic arterial blood pressure respectively. It was concluded that the selective neuronal effects of substance P were secondary to changes in vascular perfusion in the area stimulated by the radiant heat source.  相似文献   

10.
The response pattern of reticulo-spinal (RS) neurons in two reticulo-spinal structures (n. reticularus pontis caudalis and n. reticularis gigantocellularis) to both electrical (somatic) nerve stimulation and natural mechanical innocuous (tapping with varying force) and noxious (pinch and prick) stimulation were investigated in chloralose-anesthetized cats. Bulbar and pontine neurons were found to vary considerably in their sensory characteristics: of the former 43% were activated only by high-threshold electrical nerve stimulation and noxious stimuli, while the remainder responded to innocuous stimuli as well. In the case of pontine neurons 81% produced a response to stimulation of low-threshold nerve fibers, and to innocuous as well as noxious stimuli. A relationship was found between the sensory characteristics of reticulo-spinal neurons and their axon conductance velocities. Various aspects and the likely functional significance of specialization in brainstem neurons of the pontine and bulbar reticular formation come under discussion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 461–469, July–August, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号