首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we reported that stable transfection of human UDP-glucose pyrophosphorylase (hUGP2) rescued galactose-1-phosphate uridyltransferase (GALT)-deficient yeast from "galactose toxicity." Here we test in human cell lines the hypothesis that galactose toxicity was caused by excess accumulation of galactose-1-phosphate (Gal-1-P), inhibition of hUGP2, and UDP-hexose deficiency. We found that SV40-transformed fibroblasts derived from a galactosemic patient accumulated Gal-1-P from 1.2+/-0.4 to 5.2+/-0.5 mM and stopped growing when transferred from 0.1% glucose to 0.1% galactose. Control fibroblasts accumulated little Gal-1-P and continued to grow. The GALT-deficient cells had 157+/-10 micromoles UDP-glucose/100 g protein and 25+/-5 micromoles UDP-galactose/100 g protein when grown in 0.1% glucose. The control cells had 236+/-25 micromoles UDP- glucose/100 g protein and 82+/-10 micromoles UDP-galactose/100 g protein when grown in identical medium. When we transfected the GALT-deficient cells with either the hUGP2 or GALT gene, their UDP-glucose content increased to 305+/-28 micromoles/100 g protein (hUGP2-transfected) and 210+/-13 micromoles/100 g protein (GALT-transfected), respectively. Similarly, UDP-galactose content increased to 75+/-12 micromoles/100 g protein (hUGP2-transfected) and 55+/-9 micromoles/100 g protein (GALT-transfected), respectively. Though the GALT-transfected cells grew in 0.1% galactose with little accumulation of Gal-1-P (0.2+/-0.02 mM), the hUGP2-transfected cells grew but accumulated some Gal-1-P (3.1+/-0.4 mM). We found that 2.5 mM Gal-1-P increased the apparent KM of purified hUGP2 for glucose-1-phosphate from 19.7 microM to 169 microM, without changes in apparent Vmax. The Ki of the reaction was 0.47 mM. Gal-1-P also inhibited UDP-N-acetylglucosamine pyrophosphorylase, which catalyzes the formation of UDP-N-acetylglucosamine. We conclude that intracellular concentrations of Gal-1-P found in classic galactosemia inhibit UDP-hexose pyrophosphorylases and reduce the intracellular concentrations of UDP-hexoses. Reduced Sambucus nigra agglutinin binding to glycoproteins isolated from cells with increased Gal-1-P is consistent with the resultant inhibition of glycoprotein glycosylation.  相似文献   

2.
A new selection system based on galactose as selective agent and a UDP-glucose:galactose-1-phosphate uridyltransferase gene as selective gene is presented. A broad range of plant species, including agronomically important crops such as maize and rice, is sensitive to low dosages of galactose. The toxicity of galactose is believed to be due to accumulation of galactose-1-phosphate, generated by endogenous galactokinase after uptake. Here, it is demonstrated that this toxicity can be sufficiently alleviated by the Agrobacterium tumefaciens-mediated introduction of the E. coli UDP-glucose:galactose-1-phosphate uridyltransferase (galT) gene, driven by a 35S-promoter, to allow transgenic shoots of potato and oil seed rape to regenerate on galactose containing selection media, resulting in high transformation frequencies (up to 35% for potato). Analysis of genomic DNA and UDP-glucose:galactose-1-phosphate uridyltransferase activity in randomly selected potato transformants confirmed the presence and active expression of the galT gene. The agricultural performance of transgenic potatoes was evaluated by monitoring the phenotype and tuber yield for two generations and these characters were found to be indistinguishable from non-transgenic controls. Thus, the galactose selection system provides a new alternative being distinct from conventional antibiotic and herbicide selection systems as well as so-called positive selection systems where the selective agent has a beneficial effect.  相似文献   

3.
4.
The GAL3 gene plays a critical role in galactose induction of the GAL genes that encode galactose- metabolizing enzymes in Saccharomyces cerevisiae. Defects in GAL3 result in a long delay in GAL gene induction, and overproduction of Gal3p causes constitutive expression of GAL. Here we demonstrate that concomitant overproduction of the negative regulator, Gal80p, and Gal3p suppresses this constitutive GAL expression. This interplay between Gal80p and Gal3p is direct, as tagged Gal3p coimmunoprecipitated with Gal80p. The amount of coprecipitated Gal80p increased when GAL80 yeast cells were grown in the presence of galactose. When both GAL80 and GAL3 were overexpressed, the amount of coprecipitated Gal80p was not affected by galactose. Tagged gal3 mutant proteins bound to purified Gal80p, but only poorly in comparison with the wild type, suggesting that formation of the Gal80p-Gal3p complex depends on the normal function of Gal3p. Gal3p appeared larger in Western blots (immunoblots) than predicted by the published nucleic acid sequence. Reexamination of the DNA sequence of GAL3 revealed several mistakes, including an extension at the 3' end of another predicted 97 amino acids.  相似文献   

5.
6.
The uptake and catabolism of galactose by the yeast Saccharomyces cerevisiae is much lower than for glucose and fructose, and in applications of this yeast for utilization of complex substrates that contain galactose, for example, lignocellulose and raffinose, this causes prolonged fermentations. Galactose is metabolized via the Leloir pathway, and besides the industrial interest in improving the flux through this pathway it is also of medical relevance to study the Leloir pathway. Thus, genetic disorders in the genes encoding galactose-1-phosphate uridylyltransferase or galactokinase result in galactose toxicity both in patients with galactosemia and in yeast. In order to elucidate galactose related toxicity, which may explain the low uptake and catabolic rates of S. cerevisiae, we have studied the physiological characteristics and intracellular metabolite profiles of recombinant S. cerevisiae strains with improved or impaired growth on galactose. Aerobic batch cultivations on galactose of strains with different combinations of overexpression of the genes GAL1, GAL2, GAL7, and GAL10, which encode proteins that together convert extracellular galactose into glucose-1-phosphate, revealed a decrease in the maximum specific growth rate when compared to the reference strain. The hypothesized toxic intermediate galactose-1-phosphate cannot be the sole cause of galactose related toxicity, but indications were found that galactose-1-phosphate might cause a negative effect through inhibition of phosphoglucomutase. Furthermore, we show that galactitol is formed in S. cerevisiae, and that the combination of elevated intracellular galactitol concentration, and the ratio between galactose-1-phosphate concentration and phosphoglucomutase activity seems to be important for galactose related toxicity causing decreased growth rates.  相似文献   

7.
8.
Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.KEY WORDS: Yeast, Galactosemia, UPR, Lithium, Galactose  相似文献   

9.
Aldose-1-epimerase or mutarotase (EC 5.1.3.3) catalyzes interconversion of α/β-anomers of aldoses, such as glucose and galactose, and is distributed in a wide variety of organisms from bacteria to humans. Nevertheless, the physiological role of this enzyme has been elusive in most cases, because the α-form of aldoses in the solid state spontaneously converts to the β-form in an aqueous solution until an equilibrium of α : β=36.5 : 63.5 is reached. A gene named GAL10 encodes this enzyme in yeast. Here, we show that the GAL10 -encoded mutarotase is necessary for utilization of galactose in the milk yeast Kluyveromyces lactis , and that this condition is presumably created by the presence of the β-specific galactose transporter, which excludes the α-anomer from the α/β-mixture in the medium at the cell surface. Thus, we found that a mutarotase-deficient mutant of K. lactis failed to grow on medium, in which galactose was the sole carbon source, but, surprisingly, that the growth failure is suppressed by concomitant expression of the Saccharomyces cerevisiae -derived galactose transporter Gal2p, but not by that of the K. lactis galactose transporter Hgt1p. We also suggest the existence of another mutarotase in K. lactis , whose physiological role remains unknown, however.  相似文献   

10.
There are several differences between monocotyledonous and dicotyledonous plants. The sensitivity towards added galactose which inhibits auxin-induced coleoptile elongation but not stem elongation is one of the conspicuous differences between the two types of plants. InAvena coleoptile segments, galactose, probably as galactose-1-phosphate, inhibits the formation of UDP-glucose from glucose-l-phosphate. The inhibition of UDP-glucose formation due to galactose is not found inPisum epicotyl segments. InAvena UTP: α-D-glucose-1-phosphate uridyltransferase (EC 2.7.7.9) which catalyzes the reaction from glucose-1-phosphate to UDP-glucose seems to be inhibited by galactose-1-phosphate.  相似文献   

11.
12.
Galactose inhibited auxin-induced cell elongation of oat coleoptiles but not that of azuki bean stems. Galactose decreased the level of UDP-glucose in oat coleoptiles but not in azuki bean hypocotyls. Glucose-1-phosphate uridyltransferase activity (EC 2.7.7.9), in a crude extract from oat coleoptiles, was competitively inhibited by galactose-1-phosphate, but that enzyme from azuki bean was not. A correlation was found between inhibition of growth by galactose and inhibition of glucose-1-phosphate uridyltransferase activity by galactose-1-phosphate using oat, wheat, maize, barley, azuki bean, pea, mung bean, and cucumber plants. Thus, it is concluded that galactose is converted into galactose-1-phosphate, which interferes with UDP-glucose formation as an analog of glucose-1-phosphate.  相似文献   

13.
14.
15.
16.
The characteristics of the inducible galactose transport system in bakers' yeast were studied in uridine diphosphate, galactose-1-phosphate uridylyl-transferaseless cells. Transferaseless cells transport galactose at the same initial rate as wild-type cells and accumulate a mixture of free galactose and galactose-1-phosphate. The addition of 14C-labeled galactose to cells preloaded with unlabeled galactose and galactose-1-phosphate results in a higher rate of labeling of the free-sugar pool than of the galactose-1-phosphate pool. These results support other evidence that galactose uptake in bakers' yeast is a carrier-mediated, facilitated diffusion and that phosphorylation is an intracellular event after uptake of the free sugar.  相似文献   

17.
Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.  相似文献   

18.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

19.
20.
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (GALT) results in the potentially lethal disorder galactosemia; the biochemical basis of pathophysiology in galactosemia remains unknown. We have applied a yeast expression system for human GALT to test the hypothesis that genotype will correlate with GALT activity measured in vitro and with metabolite levels and galactose sensitivity measured in vivo. In particular, we have determined the relative degree of functional impairment associated with each of 16 patient-derived hGALT alleles; activities ranged from null to essentially normal. Next, we utilized strains expressing these alleles to demonstrate a clear inverse relationship between GALT activity and galactose sensitivity. Finally, we monitored accumulation of galactose-1-P, UDP-gal, and UDP-glc in yeast expressing a subset of these alleles. As reported for humans, yeast deficient in GALT, but not their wild type counterparts, demonstrated elevated levels of galactose 1-phosphate and diminished UDP-gal upon exposure to galactose. These results present the first clear evidence in a genetically and biochemically amenable model system of a relationship between GALT genotype, enzyme activity, sensitivity to galactose, and aberrant metabolite accumulation. As such, these data lay a foundation for future studies into the underlying mechanism(s) of galactose sensitivity in yeast and perhaps other eukaryotes, including humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号