首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of extracellular endoglucanase, a carboxymethylcellulase (CMCase), produced by the marine shipworm bacterium to insoluble cellulose substrates was investigated. Up to 70% of CMCase activity bound to cellulosic substrates, and less than 10% bound to noncellulosic substrates. CMCase binding to cellulose was enhanced in basal salt medium or sodium phosphate buffer containing 0.5 M NaCl. Increased cellulose particle size correlated with decreased CMCase binding. Also, cellulose treated with either 5 N NaOH or commercial cellulase reduced the CMCase binding to these surfaces. Pretreatment of CMCase preparations with 0.01% sodium dodecyl sulfate, 5% β-mercaptoethanol, and 5 mM EDTA or ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) had little effect on binding to cellulose. While pretreatment of CMCase with trypsin, chymotrypsin, and pronase had little effect on CMCase enzymatic activity, the ability to bind to cellulose was greatly diminished by these treatments.  相似文献   

2.
Summary Zymographic techniques were used for identifying multiple carboxymethylcellulase (CMCase) activities present in the cell free culture broth of the marine shipworm bacterium. CMCase activity was associated with at least three major and four minor polypeptides. After sodium dodecyl sulphate (SDS) removal from polyacrylamide gels, the major CMCase polypeptides became active, apparently renaturing, even when samples were boiled for 10 minutes in the presence of SDS and -mercaptoethanol (ME) prior to electrophoresis. The relative binding affinity of the active polypeptides for microcrystalline cellulose was also qualitatively determined by zymography.  相似文献   

3.
Abstract Adhesion to cellulose of five strains of mesophilic, cellulolytic clostridia , isolated from a municipal waste digestor, was found to be a reversible phenomenon. The type of attachment for the five strains conformed to a multilayer adhesion. In a first step, attachment to the adhesion site occurred by cell-cellulose interaction. In a second step, cell-cell interactions were identified. The five strains adhered slightly better to magazine paper and Whatman No. 1 filter paper than to newspaper and cardboard. Two strains, C401 and A22, were studied in more detail. The two strains, harvested in stationary phase, presented a heterogeneous population which could be separated: (i) as 'unbound' cells, corresponding to cells remaining in suspension from cellulose-grown cultures; and (ii) as 'bound' cells, coming from two successive washes with 50 mM Tris HCl, pH 7.0, which released 'bound' cells. In adhesion measurements, eluted cells ('bound' cells) adhered better to the cellulose than the 'unbound' cells. Strain C401 adhered better than strain A22 to the cellulose: 1.9-fold for the 'bound' cells and 3.6-fold for the 'unbound' cells. Adhesion of the two isolates was enhanced by the presence of calcium (10 mM). Cellobiose and glucose had no effect on strain A22 adhesion. Conversely, adhesion of strain C401 to cellulose was enhanced by cellobiose at a concentration of 1.5 g I−1, but 85% inhibited by a concentration of 5.0 g I−1. The two strains adhered to the same site on Whatman filter paper and unspecific interactions between the two strains occur.  相似文献   

4.
Growth characteristics of a cellulolytic nitrogen-fixing bacterium isolated from a marine shipworm by Waterbury et al. (J. B. Waterbury, C. B. Calloway, and R. D. Turner, Science 221:1401-1403, 1983) are described. When grown microaerobically, the bacterium exhibited doubling times of about 2 days in cellulose-supplemented synthetic medium devoid of combined nitrogen. Maximum growth was reached 12 to 16 days after inoculation. Growth optima for pH, temperature, and NaCl concentration were 8.5, 30 to 35°C, and 0.3 M, respectively. During growth the bacterium produced succinic acid (0.026%) and acetic acid (0.010%). Formic acid (0.010%) was produced during the stationary growth phase. No growth was observed when glucose was the sole carbon source. Cellobiose supported weak growth, while longer-chain-length cellodextrins supported extensive growth. Analysis of residual carbohydrates in the medium during growth indicated that the bacterium catabolized a terminal glucose moiety from the cellodextrin chain.  相似文献   

5.
The adherence of Ruminococcus albus 8 to crystalline cellulose was studied, and an affinity-based assay was also used to identify candidate cellulose-binding protein(s). Bacterial adherence in cellulose-binding assays was significantly increased by the inclusion of either ruminal fluid or micromolar concentrations of both phenylacetic and phenylpropionic acids in the growth medium, and the addition of carboxymethylcellulose (CMC) to assays decreased the adherence of the bacterium to cellulose. A cellulose-binding protein with an estimated molecular mass following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of ~21 kDa, designated CbpC, was present in both cellobiose- and cellulose-grown cultures, and the relative abundance of this protein increased in response to growth on cellulose. Addition of 0.1% (wt/vol) CMC to the binding assays had an inhibitory effect on CbpC binding to cellulose, consistent with the notion that CbpC plays a role in bacterial attachment to cellulose. The nucleotide sequence of the cbpC gene was determined by a combination of reverse genetics and genomic walking procedures. The cbpC gene encodes a protein of 169 amino acids with a calculated molecular mass of 17,655 Da. The amino-terminal third of the CbpC protein possesses the motif characteristic of the Pil family of proteins, which are most commonly involved with the formation of type 4 fimbriae and other surface-associated protein complexes in gram-negative, pathogenic bacteria. The remainder of the predicted CbpC sequence was found to have significant identity with 72- and 75-amino-acid motifs tandemly repeated in the 190-kDa surface antigen protein of Rickettsia spp., as well as one of the major capsid glycoproteins of the Chlorella virus PBCV-1. Northern blot analysis showed that phenylpropionic acid and ruminal fluid increase cbpC mRNA abundance in cellobiose-grown cells. These results suggest that CbpC is a novel cellulose-binding protein that may be involved in adherence of R. albus to substrate and extends understanding of the distribution of the Pil family of proteins in gram-positive bacteria.  相似文献   

6.
Clostridium cellulolyticum, a mesophilic anaerobic bacterium, produces highly active enzymatic complexes called cellulosomes. This strain was already shown to bind to cellulose, however the molecular mechanism(s) involved is not known. In this context we focused on the gene named hycP, encoding a 250-kDa protein of unknown function, containing a Family-3 Carbohydrate Binding Module (CBM3) along with 23 hyaline repeat modules (HYR modules). In the microbial kingdom the gene hycP is only found in C. cellulolyticum and the very close strain recently sequenced Clostridium sp BNL1100. Its presence in C. cellulolyticum guided us to analyze its function and its putative role in adhesion of the cells to cellulose. The CBM3 of HycP was shown to bind to crystalline cellulose and was assigned to the CBM3b subfamily. No hydrolytic activity on cellulose was found with a mini-protein displaying representative domains of HycP. A C. cellulolyticum inactivated hycP mutant strain was constructed, and we found that HycP is neither involved in binding of the cells to cellulose nor that the protein has an obvious role in cell growth on cellulose. We also characterized the role of the cellulosome scaffolding protein CipC in adhesion of C. cellulolyticum to cellulose, since cellulosome scaffolding protein has been proposed to mediate binding of other cellulolytic bacteria to cellulose. A second mutant was constructed, where cipC was inactivated. We unexpectedly found that CipC is only partly involved in binding of C. cellulolyticum to cellulose. Other mechanisms for cellulose adhesion may therefore exist in C. cellulolyticum. In addition, no cellulosomal protuberances were observed at the cellular surface of C. cellulolyticum, what is in contrast to reports from several other cellulosomes producing strains. These findings may suggest that C. cellulolyticum has no dedicated molecular mechanism to aggregate the cellulosomes at the cellular surface.  相似文献   

7.
Broadbean (Vicia faba L.) leaf discs have been incubated with the slowly permeant thiol reagent [203Hg]-para-chloromercuribenzenesulfonic acid (PCMBS) in the presence or in the absence of sucrose, and the release of PCMBS-labeled proteins has been monitored in media containing various concentrations of urea, ethyleneglycol-bis-(β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA), sodium cholate, sodium dodecyl sulfate, Triton X-100, octylglucoside or (3-[3-cholamidopropyl)-dimethylammonio] 1-propane-sulfonate) (CHAPS). The proteins differentially labeled by PCMBS in the presence of sucrose which, on the basis of previous results, are assumed to include the sucrose carrier, were preferentially solubilized by 1% CHAPS, 1% octylglucoside, or 1% Triton X-100. Other PCMBS-labeled proteins (`background' proteins) could be partially removed by EGTA, urea, or 0.1% cholate. Sequential treatment by 10 mm EGTA and 1% CHAPS was found to give a fraction highly enriched in the differentially labeled proteins. Analysis of the specific activity of microsomal pellets suggests that the results obtained with leaf discs give a good account of what is occurring at the plasma membrane level. These data, which suggest that the proteins differentially labeled by PCMBS in the presence of sucrose are intrinsic membrane proteins, can be used to solubilize these proteins from microsomal fractions.  相似文献   

8.
The adhesion of Clostridium cellulolyticum spores and cells to Whatman No. 1 filter paper was studied. A suspension of vegetative cells in exponential phase from a culture on cellobiose adhered at 60% whereas spores at the same initial concentration were bound to the Whatman filter paper at 90%. Adhesion of vegetative cellulolytic cells occurs on specific cellulosic sites and reveals a sigmoid type II curve. Non-cellulolytic vegetative cells from Clostridium butyricum do not adhere to the cellulose. Spore adhesion is a non-specific process since non-cellulolytic spores from Clostridium butyricum adhered almost in the same range to filter paper than cellulolytic spores.  相似文献   

9.
In this study, we demonstrate that the cellulosome of Clostridium cellulolyticum grown on xylan is not associated with the bacterial cell. Indeed, the large majority of the activity (about 90%) is localized in the cell-free fraction when the bacterium is grown on xylan. Furthermore, about 70% of the detected xylanase activity is associated with cell-free high-molecular-weight complexes containing avicelase activity and the cellulosomal scaffolding protein CipC. The same repartition is observed with carboxymethyl cellulase activity. The cellulose adhesion of xylan-grown cells is sharply reduced in comparison with cellulose-grown cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that cellulosomes derived from xylan- and cellulose-grown cells have different compositions. In both cases, the scaffolding protein CipC is present, but the relative proportions of the other components is dramatically changed depending on the growth substrate. We propose that, depending on the growth substrate, C. cellulolyticum is able to regulate the cell association and cellulose adhesion of cellulosomes and regulate cellulosomal composition.  相似文献   

10.
Approximately 70% of the cells in a suspension of the amylolytic bacterium Lactobacillus amylovorus bind to cornstarch granules within 30 min at 25°C. More than 60% of the bound bacteria were removed by formaldehyde (2%) or glycine (1 M) at pH 2.0. More than 90% of the bound bacteria were removed by MgCl2 (2 M; pH 7.0). Binding of L. amylovorus to cornstarch was inhibited in heat-killed cells and in cells that had been pretreated with glutaraldehyde, formaldehyde, sodium azide, trypsin, or 1% soluble potato starch. Bacterial binding to cornstarch appeared to correlate with both the concentration of cornstarch in the suspension and the amylose content in the granules. The ability of L. amylovorus to adhere to cornstarch granules was reduced for granules that had been extracted with HCl-ethanol, HCl-methanol, HCl-propanol, or HCl-butanol. Chemical derivatization of cornstarch resulted in a wide variety of adhesion responses by these bacteria. For example, 2-O-butyl starch (degree of substitution, 0.09) enhanced adhesion, whereas two palmitate starches (degree of substitution, 0.48 and 0.09) exhibited reduced adhesion activities. 2-O-(2-hydroxybutyl) starch and starch-poly(ethylene-co-acrylic acid) ester showed adhesion activities similar to those of the nonderivatized starch controls.  相似文献   

11.
《Anaerobe》1999,5(5):547-554
Scanning electron microscopy detected ultrastructural protuberances on the cellulolytic anaerobeEubacterium cellulosolvens . Such cell surface structures were found only when cells were cultivated in cellulose containing medium, suggesting these structures play a role in cellulose degradation. Organisms cultivated in medium containing cellobiose, glucose, fructose, maltose, or carboxymethylcellulose (CMC) contained few, if any, of these protuberances. Also, when a soluble carbohydrate or CMC was added to cellulose-grown cells, the ultrastructural protuberances were no longer detected. In fact, a time course study revealed that the loss of these protuberant structures occurred within 5 min of the addition of glucose, cellobiose, fructose, or a glucose analog to the medium. On the other hand, formation of these protuberances required at least 2 h, and 4 h before large numbers were present on the cells. Cellulose-grown cells also bound the FITC-labeled lectin BSI-B4, obtained from Bandeiraea (formerly Griffonia) simplicifolia. Less detectable levels of lectin were bound by cellobiose-grown cells, and glucose- and fructose-grown cells did not bind any detectable levels of the lectin. Moreover, the addition of glucose or 2-deoxyglucose to the medium of a cellulose-grown culture resulted in the loss of detectable lectin binding. A cellulose-affinity protein fraction, which contained cellulase activity, was also isolated from the cellular extracts of cellobiose- and cellulose-grown cultures of E. cellulosolvens. This affinity fraction could not be eluted from the cellulose column with either sodium dodecyl sulfate (SDS), urea, or a 2-M solution of NaCl, but was eluted by Tris buffer containing ethylenediaminetetraacetic acid (EDTA). The fraction possessed cellulase activity, and consisted of numerous polypeptides. However, this protein fraction could not be detected in the extract of glucose-grown cultures, or in the extract of cellulose-grown cultures within 5 min of the addition of glucose (or a glucose analog) to the medium. The immediate loss of the cellulose-affinity protein fraction and protuberant structures when a soluble carbohydrate was added to the medium indicated some, as yet unknown, regulatory mechanism.  相似文献   

12.
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane.  相似文献   

13.

Laboratory experiments were conducted to study the interaction between adhesion of the bacterium Halomonas marina to substrata of different wettabilities, the combination of which has been demonstrated to influence the attachment response of cyprid larvae of the barnacle Balanus amphitrite. Cyprid attachment in the presence of bacterial films was shown to be inhibited when films were on polystyrene but not on tissue‐culture polystyrene or glass. Using an enzyme‐linked lectin assay, bacteria on polystyrene showed an increase in binding of the lectin concanavalin A compared to bacteria on tissue‐culture treated polystyrene, indicating a difference in surface polymers associated with H. marina when attached to different substrata. Although bacterial growth supernatants when adsorbed to polystyrene were inhibitory to barnacle attachment, exopolysaccharides, to which the lectins may be binding, were not inhibitory. The data indicate that adhesion of films of bacteria to polystyrene alters the exopolymer production by H. marina and it is suggested that this change may be involved in the inhibition of cyprid attachment. However, the inhibition of cyprid larvae does not appear to be associated with the exopolysaccharides of the bacterium.  相似文献   

14.
Cellulomonas sp. (NRCC 2406) was grown on complex medium (peptone-tryptone-yeast extract) alone, or with the addition of different celluloses (solka floc, avicel, CF 11 cellulose or Whatman No. 1 filter paper) and/or glucose. Cultures growing on the complex medium without cellulose produced low levels of endo- and exo-cellulases and very little -glucosidase. Adding cellulose stimulated growth, as measured by cellular protein or by viable counts, and also stimulated production of cellulases. Adding glucose in the prescene of cellulose inhibited growth and cellulose breakdown. Glucose also inhibited attachment of growing cells to cellulose fibres. Electron microscope studies showed that Cellulomonas sp. adhered to the cellulose fibers. In the presence of cellulose in the media, the cells developed a thicker outer layer which probably helps in the adhesion process.Abbreviations PTYE peptone, tryptone, yeast extract medium - DNS dinitrosalicylic acid - CMC carboxymethyl cellulose - cfu/ml colony-forming units per ml  相似文献   

15.
Sealed tonoplast vesicles were isolated from single cells of Chara corallina with the aid of an intracellular perfusion technique in combination with a 3/10% Percoll two step gradient centrifugation. The isolated tonoplast fraction was free from plasmalemma and chloroplasts, and showed no activities of cytochrome c oxidase, and latent IDPase, but had about 10% of the NADH-cytochrome c reductase activity. The vesicles had both ATPase and PPase activities, which could be stimulated in the presence of 10 micromolar gramicidin by 170 and 130%, respectively, demonstrating the existence of sealed vesicles. Furthermore, ATP- and PPi-dependent H+ pumping through the membrane into the vesicles was shown. Both ATPase and PPase had pH optima around pH 8.5. At the physiological pH, 7.3, they still had more than 80% of their maximal activities. Ammonium molybdate, azide, and vanadate had no or little effect on the activities of both enzymes or their associated H+ pumping activities. N,N′-dicyclohexylcarbodiimide inhibited the ATPase strongly (I50 = 20 micromolar) but the PPase only weakly. The ATPase was also more sensitive to N-ethylmaleimide than the PPase. 4,4′-Stilbenedisulfonic acid affected both enzyme activities and their associated H+ pumping activities. This is in contrast to the H+-PPase of higher plants which is 4,4′-stilbenedisulfonic acid insensitive.  相似文献   

16.
嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析   总被引:15,自引:1,他引:14  
利用纤维素降解细菌和纤维素粘附的方法分别从新鲜牛粪、高温堆肥和本实验室保存的纤维素降解富集物中分离得到4株嗜热厌氧纤维素降解细菌。分离菌株为革兰氏染色阴性,直的或稍弯曲杆菌,菌体大小为0.4μm~0.6μm×3μm~15μm,严格厌氧,不还原硫酸盐,形成芽孢。多数芽孢着生于菌体顶端。分离菌株能利用纤维素滤纸、纤维素粉Whatman CFII、微晶纤维素、纤维素粉MN300和未经处理的玉米秆芯、甘蔗渣、水稻秸杆。分离菌株在pH6.2~8.9、温度45℃~65℃范围内利用纤维素,最适pH为7.0~7.5,最适温度为55℃~60℃,发酵纤维素产生乙醇、乙酸、H2和CO2。分离菌株还可利用纤维二糖、葡萄糖、果糖、麦芽糖、山梨醇作为碳源。部分长度的16S rDNA序列分析表明,分离菌株EVAI与Clostridium thermocellum具有99.8%相似性。  相似文献   

17.
From the marine sponge Halichondria panicea a lectin was isolated and characterized. The homogeneous lectin (composed of protein to 80.7% and of neutral carbohydrates to 14.1%) had a molecular weight of 78,000 (determined by gel filtration) and consisted of four subunits with a molecular weight of 21,000 each (determined by gel electrophoresis in the presence of sodium dodecyl sulfate). The hemagglutinating activity was only slightly dependent upon ionic strength and incubation temperature and did not require divalent cations, but it was inhibited by reagents for thiol groups. The Halichondria lectin was completely inhibited in hemagglutination competition experiments in the presence of fetuin, D-galacturonic acid, D-glucuronic acid, polygalacturonic acid, or L-fucose. The purified Halichondria lectin did not cause reaggregation of dissociated H. panicea cells. From the same sponge species bacteria were isolated and identified as Pseudomonas insolita. These bacteria were cultivated in marine broth 2216. Under these culture conditions the bacteria grew only in the presence of the homologous lectin; the lectin-caused effect was not abolished by D-glucuronic acid or D-galacturonic acid. However, after addition of a polysaccharide-containing fraction isolated from P. insolita, the lectin-caused, growth-promoting effect was abolished. Other lectins were found to exhibit no growth-promoting effect. On the basis of colony counts, P. insolita was the predominant bacterial species in the sponge extract; 1.9 X 10(6) Pseudomonas colonies were measured in extracts isolated from 1 g of sponge. The assumption of an interrelationship between the sponge and the bacterium is supported by the results indicating that the Halichondria lectin has no effect on the growth of such bacteria isolated from six other marine sponge species. Evidence is presented which indicates that the Halichondria lectin is not utilized during growth of the Pseudomonas species. Lectin activity was detected on the surface of mucoid cells from H. panicea. From the data obtained the possibility is discussed that the Halichondria lectin is a basis for a symbiotic relationship between the sponge and the bacterium.  相似文献   

18.
The attachment and detachment behavior of three mouse fibroblast cell lines adhering to plastic tissue culture substrata coated with the serum protein cold-insoluble globulin (CIg) resembles that seen on the usual serumcoated substrata. The transformed cell line SVT2 spreads more extensively on the CIg-coated than on the serum-coated substratum, while the nontransformed Balb/c 3T3 line and concanavalin A-selected “revertant” of SVT2 are equally well spread on both substrata. In all three cases, immunofluorescence microscopy using antibodies to CIg suggests that the cells are more tightly apposed to the CIg-coated substratum than to the serum-coated substratum. Substrate-attached material (SAM), which contains cell-substratum adhesion sites and which is left after EGTA-mediated detachment of cells, is enriched for cell surface fibronectin and glycosaminoglycans (GAG). When cells are seeded onto CIg-coated substrata rather than serum-coated substrata, there is an increased deposition of GAG but a comparable deposition of cellular proteins. The protein distribution of the two types of SAM are identical as analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, including fibronectin content. This indicates that substratum-bound CIg cannot functionally substitute for cell surface fibronectin in these adhesion sites. Analysis of the GAG deposited on CIg-coated substrata reveals that hyaluronate and the chondroitins are increased to a much greater extent than heparan sulfate; however, the ratio of hyaluronate to the various chondroitin species is invariant. These data provide further evidence that hyaluronate and the chondroitins are deposited in adhesion sites in well-defined stoichiometric proportions, possibly as supramolecular complexes, and that CIg may mediate adhesion of cells in the serum layer by binding to GAG-containing proteoglycans.  相似文献   

19.
We studied the effects of different lectins on the adhesive properties of baby hamster kidney (BHK) cells. The purpose of these studies was to learn more about the cell surface receptors involved in cell adhesion. Three adhesive phenomena were analyzed: 1) the adhesion of BHK cells to lectin-coated substrata; 2) the effects of lectins on the adhesion of cells to substrata coated by plasma fibronectin (pFN); and 3) the effects of lectins on the binding of pFN-coated beads to cells. Initial experiments with fluorescein-conjugated lectins indicated that concanavalin A (Con A), ricinus communis agglutinin I (RCA I), and wheat germ agglutinin (WGA) bound to BHK cells but peanut agglutinin (PNA), soybean agglutinin (SBA), and ulex europaeus agglutinin I (UEA I) dod not bind. All three of the lectins which bound to the cells promoted cell spreading on lectin substrata, and the morphology of the spread cells was similar to that observed with cells spread on pFN substrata. Protease treatment of the cells, however, was found to inhibit cell spreading on pFN substrata or WGA substrata more than on Con A substrata or RCA I substrata. In the experiment of cells with Con A or WGA inhibited cell spreading on pFN substrata, but RCA I treatment had no effect. Finally, treatment of cells with WGA inhibited binding to cells of pFN beads, but neither Con A nor RCA I affected this interaction. These results indicate that the lectins modify cellular adhesion in different ways, probably by interacting with different surface receptors. The possibility that the pFN receptor is a WGA receptor is discussed.  相似文献   

20.
The effects of nuclear genome duplication on the chlorophyll-protein content and photochemical activity of chloroplasts, and photosynthetic rates in leaf tissue, have been evaluated in haploid, diploid, and tetraploid individuals of the castor bean, Ricinus communis L. Analysis of this euploid series revealed that both photosystem II (2,6-dichlorophenolindophenol reduction) and photosystem I oxygen uptake (N,N,N′,N′-tetramethyl-p-phenylenediamine to methyl viologen) decrease in plastids isolated from cells with increasingly larger nuclear complement sizes. Photosynthetic O2-evolution and 14CO2-fixation rates in leaf tissue from haploid, diploid, and tetraploid individuals were also found to decrease with the increase in size of the nuclear genome. Six chlorophyll-protein complexes, in addition to a zone of detergent complexed free pigment, were resolved from sodium dodecyl sulfate-solubilized thylakoid membranes from cells of all three ploidy levels. In addition to the P700-chlorophyll a-protein complex and the light-harvesting chlorophyll a/b-protein complex, four minor complexes were revealed, two containing only chlorophyll a and two containing both chlorophyll a and b. The relative distribution of chlorophyll among the resolved chlorophyll-protein complexes and free pigment was found to be similar for all three ploidy levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号