首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim SI  Kim JY  Yun SH  Kim JH  Leem SH  Lee C 《Proteomics》2004,4(11):3610-3621
Pseudomonas sp. K82 is a soil bacterium that can degrade and use monocyclic aromatic compounds including aniline, 3-methylaniline, 4-methylaniline, benzoate and p-hydroxybenzoate as its sole carbon and energy sources. In order to understand the impact of these aromatic compounds on metabolic pathways in Pseudomonas sp. K82, proteomes obtained from cultures exposed to different substrates were displayed by two-dimensional gel electrophoresis and were compared to search for differentially induced metabolic enzymes. Column separations of active fractions were performed to identify major biodegradation enzymes. More than thirty proteins involved in biodegradation and other types of metabolism were identified by electrospray ionization-quadrupole time of flight mass spectrometry. The proteome analysis suggested that Pseudomonas sp. K82 has three main metabolic pathways to degrade these aromatic compounds and induces specific metabolic pathways for each compound. The catechol 2,3-dioxygenase (CD2,3) pathway was the major pathway and the catechol 1,2-dioxygenase (beta-ketoadipate) pathway was the secondary pathway induced by aniline (aniline analogues) exposure. On the other hand, the catechol 1,2-dioxygenase pathway was the major pathway induced by benzoate exposure. For the degradation of p-hydroxybenzoate, the protocatechuate 4,5-dioxygenase pathway was the major degradation pathway induced. The nuclear magnetic resonance analysis of substrates demonstrated that Pseudomonas sp. K82 metabolizes some aromatic compounds more rapidly than others (benzoate > p-hydroxybenzoate > aniline) and that when combined, p-hydroxybenzoate metabolism is repressed by the presence of benzoate or aniline. These results suggest that proteome analysis can be useful in the high throughput study of bacterial metabolic pathways, including that of biodegradation, and that inter-relationships exist with respect to the metabolic pathways of aromatic compounds in Pseudomonas sp. K82.  相似文献   

2.
Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene‐grown cells but not in tetralin‐ or salicylate‐grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes.  相似文献   

3.
Genomic and proteomic approaches were used to investigate phthalate and benzoate catabolism in Rhodococcus sp. strain RHA1, a polychlorinated biphenyl-degrading actinomycete. Sequence analyses identified genes involved in the catabolism of benzoate (ben) and phthalate (pad), the uptake of phthalate (pat), and two branches of the beta-ketoadipate pathway (catRABC and pcaJIHGBLFR). The regulatory and structural ben genes are separated by genes encoding a cytochrome P450. The pad and pat genes are contained on a catabolic island that is duplicated on plasmids pRHL1 and pRHL2 and includes predicted terephthalate catabolic genes (tpa). Proteomic analyses demonstrated that the beta-ketoadipate pathway is functionally convergent. Specifically, the pad and pat gene products were only detected in phthalate-grown cells. Similarly, the ben and cat gene products were only detected in benzoate-grown cells. However, pca-encoded enzymes were present under both growth conditions. Activity assays for key enzymes confirmed these results. Disruption of pcaL, which encodes a fusion enzyme, abolished growth on phthalate. In contrast, after a lag phase, growth of the mutant on benzoate was similar to that of the wild type. Proteomic analyses revealed 20 proteins in the mutant that were not detected in wild-type cells during growth on benzoate, including a CatD homolog that apparently compensated for loss of PcaL. Analysis of completed bacterial genomes indicates that the convergent beta-ketoadipate pathway and some aspects of its genetic organization are characteristic of rhodococci and related actinomycetes. In contrast, the high redundancy of catabolic pathways and enzymes appears to be unique to RHA1 and may increase its potential to adapt to new carbon sources.  相似文献   

4.
Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C(1) metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were approximately 16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (box(C)) pathway was also expressed during growth on biphenyl: Box(C) proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (box(M)) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C(1) metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain.  相似文献   

5.
4-羟基苯甲酸(4HBA)是在自然界中广泛存在的芳香族化合物,也是很多天然产物和人工合成化合物的中间代谢产物。4HBA的代谢途径有原儿茶酸开环途径、脱碳酸途径和厌氧微生物的苯甲酰-CoA还原途径,以及尚未完全阐明的龙胆酸开环途径。从4HBA转化为龙胆酸的过程包含NIH重排反应步骤,本综述重点介绍NIH重排反应的研究进展并初步介绍了涉及4HBA降解过程中的酶。在本综述中,结合我们的研究工作介绍了一个嗜热Bacillus sp.B1菌株降解4HBA等芳香族化合物的代谢途径,最后对4HBA降解过程中的NIH重排反应研究进行了展望。  相似文献   

6.
Rhodococcus sp. strain B4, isolated from a soil sample contaminated with polycyclic aromatic hydrocarbons, grows with naphthalene as the sole source of carbon and energy. Salicylate and gentisate were identified as intermediates in the catabolism of naphthalene. In contrast to the well-studied catabolic pathway encoded by the NAH7 plasmid of Pseudomonas putida, salicylate does not induce the genes of the naphthalene-degradative pathway in Rhodococcus sp. strain B4. The key enzymes of naphthalene degradation in Rhodococcus sp. strain B4 have unusual cofactor requirements. The 1,2-dihydroxynaphthalene oxygenase activity depends on NADH and the salicylate 5-hydroxylase requires NADPH, ATP, and coenzyme A.  相似文献   

7.
8.
Kim YH  Cho K  Yun SH  Kim JY  Kwon KH  Yoo JS  Kim SI 《Proteomics》2006,6(4):1301-1318
Proteomic analysis of Pseudomonas putida KT2440 cultured in monocyclic aromatic compounds was performed using 2-DE/MS and cleavable isotope-coded affinity tag (ICAT) to determine whether proteins involved in aromatic compound degradation pathways were altered as predicted by genomic analysis (Jiménez et al., Environ Microbiol. 2002, 4, 824-841). Eighty unique proteins were identified by 2-DE/MS or MS/MS analysis from P. putida KT2440 cultured in the presence of six different organic compounds. Benzoate dioxygenase (BenA, BenD) and catechol 1,2-dioxygenase (CatA) were induced by benzoate. Protocatechuate 3,4-dixoygenase (PcaGH) was induced by p-hydroxybenzoate and vanilline. beta-Ketoadipyl CoA thiolase (PcaF) and 3-oxoadipate enol-lactone hydrolase (PcaD) were induced by benzoate, p-hydroxybenzoate and vanilline, suggesting that benzoate, p-hydroxybenzoate and vanilline were degraded by different dioxygenases and then converged in the same beta-ketoadipate degradation pathway. An additional 110 proteins, including 19 proteins from 2-DE analysis, were identified by cleavable ICAT analysis for benzoate-induced proteomes, which complemented the 2-DE results. Phenylethylamine exposure induced beta-ketoacyl CoA thiolase (PhaD) and ring-opening enzyme (PhaL), both enzymes of the phenylacetate (pha) biodegradation pathway. Phenylalanine induced 4-hydroxyphenyl-pyruvate dioxygenase (Hpd) and homogentisate 1,2-dioxygenase (HmgA), key enzymes in the homogentisate degradation pathway. Alkyl hydroperoxide reductase (AphC) was induced under all aromatic compounds conditions. These results suggest that proteome analysis complements and supports predictive information obtained by genomic sequence analysis.  相似文献   

9.
Bacterial strain M213 was isolated from a fuel oil-contaminated soil in Idaho, USA, by growth on naphthalene as a sole source of carbon, and was identified as Rhodococcus opacus M213 by 16S rDNA sequence analysis and growth on substrates characteristic of this species. M213 was screened for growth on a variety of aromatic hydrocarbons, and growth was observed only on simple 1 and 2 ring compounds. No growth or poor growth was observed with chlorinated aromatic compounds such as 2,4-dichlorophenol and chlorobenzoates. No growth was observed by M213 on salicylate, and M213 resting cells grown on naphthalene did not attack salicylate. In addition, no salicylate hydroxylase activity was detected in cell free lysates, suggesting a pathway for naphthalene catabolism that does not pass through salicylate. Enzyme assays indicated induction of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase on different substrates. Total DNA from M213 was screened for hybridization with a variety of genes encoding catechol dioxygenases, but hybridization was observed only with catA (encoding catechol 1,2-dioxygenase) from R. opacus 1CP and edoD (encoding catechol 2,3-dioxygenase) from Rhodococcus sp. I1. Plasmid analysis indicated the presence of two plasmids (pNUO1 and pNUO2). edoD hybridized to pNUO1, a very large (approximately 750 kb) linear plasmid.  相似文献   

10.
11.
Lee SE  Seo JS  Keum YS  Lee KJ  Li QX 《Proteomics》2007,7(12):2059-2069
Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) commonly present in PAH-contaminated soils. We studied fluoranthene catabolism and associated proteins in Mycobacterium sp. JS14, a bacterium isolated from a PAH-contaminated soil in Hilo (HI, USA). Fluoranthene degrades in at least three separated pathways via 1-indanone, 2',3'-dihydroxybiphenyl-2,3,-dicarboxylic acid, and naphthalene-1,8-dicarboxylic acid. Part of the diverse catabolism is converged into phthalate catabolism. An increased expression of 25 proteins related to fluoranthene catabolism is found with 1-D PAGE or 2-DE and nano-LC-MS/MS. Detection of fluoranthene catabolism associated proteins coincides well with its multiple degradation pathways that are mapped via metabolites identified. Among the up-regulated proteins, PAH ring-hydroxylating dioxygenase alpha-subunit and beta-subunit and 2,3-dihydroxybiphenyl 1,2-dioxygenase are notably induced. The up-regulation of trans-2-carboxybenzalpyruvate hydratase suggests that some of fluoranthene metabolites may be further degraded through aromatic dicarboxylic acid pathways. Catalase and superoxide dismutase were up-regulated to control unexpected oxidative stress during the fluoranthene catabolism. The up-regulation of chorismate synthase and nicotine-nucleotide phosphorylase may be necessary for sustaining shikimate pathway and pyrimidine biosynthesis, respectively. A fluoranthene degradation pathway for Mycobacterium sp. JS14 was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of fluoranthene degradation.  相似文献   

12.
13.
In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase alpha subunit (BenA)] of the beta-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenase alpha subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaB)] of the beta-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the beta-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADP1. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different beta-ketoadipate pathway from other Acinetobacter species.  相似文献   

14.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

15.
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) catalyzes the ring cleavage step in the catabolism of aromatic compounds through the protocatechuate branch of the beta-ketoadipate pathway. A protocatechuate 3,4-dioxygenase was purified from Streptomyces sp. strain 2065 grown in p-hydroxybenzoate, and the N-terminal sequences of the beta- and alpha-subunits were obtained. PCR amplification was used for the cloning of the corresponding genes, and DNA sequencing of the flanking regions showed that the pcaGH genes belonged to a 6. 5-kb protocatechuate catabolic gene cluster; at least seven genes in the order pcaIJFHGBL appear to be transcribed unidirectionally. Analysis of the cluster revealed the presence of a pcaL homologue which encodes a fused gamma-carboxymuconolactone decarboxylase/beta-ketoadipate enol-lactone hydrolase previously identified in the pca gene cluster from Rhodococcus opacus 1CP. The pcaIJ genes encoded proteins with a striking similarity to succinyl-coenzyme A (CoA):3-oxoacid CoA transferases of eukaryotes and contained an indel which is strikingly similar between high-G+C gram-positive bacteria and eukaryotes.  相似文献   

16.
17.
Metabolism of anthracene by a Rhodococcus species   总被引:2,自引:0,他引:2  
A Rhodococcus sp. isolated from contaminated river sediment was investigated to determine if the isolate could degrade high molecular mass polycyclic aromatic hydrocarbons. The Rhodococcus sp. was able to utilize anthracene (53%), phenanthrene (31%), pyrene (13%), and fluoranthene (5%) as sole source of carbon and energy, but not naphthalene or chrysene. In a study of the degradation of anthracene by a Rhodococcus sp., the identification of ring-fission products indicated at least two ring-cleavage pathways. One results in the production of 6,7-benzocoumarin, previously shown to be produced chemically from the product of meta cleavage of 1,2-dihydroxyanthracene, a pathway which has been well established in Gram-negative bacteria. The second is an ortho cleavage of 1,2-dihydroxyanthracene that produces 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, a dicarboxylic acid ring-fission product. This represents a novel metabolic pathway only identified in Gram-positive bacteria.  相似文献   

18.
A strain of Pseudomonas paucimobilis (strain Q1) capable of utilizing biphenyl was isolated from soil. This strain grew not only on substituted biphenyls, but also on salicylate, xylene or toluene or both (xylene/toluene), and substituted benzoates. Evidence is presented that the catabolism of biphenyl, xylene/toluene, and salicylate is regulated by a common unit in this strain. The catabolism of biphenyl, xylene/toluene, and salicylate is interrelated, since benzoate and toluate are common metabolic intermediates of biphenyl and xylene/toluene, and salicylate is produced from 2-hydroxybiphenyl (o-phenylphenol). All the oxidative enzymes of the biphenyl, xylene/toluene, and salicylate degradative pathways were induced when the cells were grown on either biphenyl, xylene/toluene or salicylate. The P. paucimobilis Q1 cells showed induction of the meta-cleavage enzymes of both 2,3-dihydroxybiphenyl and catechol. Biphenyl-negative derivatives of strain Q1 were simultaneously rendered xylene/toluene and salicylate negative, whereas reversion to the biphenyl-positive character of such derivatives invariably led to a xylene/toluene- and salicylate-positive phenotype. Growth of the P. paucimobilis Q1 cells with benzoate as a sole carbon source allowed the induction of only the ortho pathway enzymes, suggesting that biphenyl, xylene/toluene, or salicylate specifically induced the meta pathway enzymes for the oxidative degradation of these compounds.  相似文献   

19.
20.
The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate. Inducible acyl-coenzyme A synthetase activities for phthalates, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were detected in the cells grown on aromatic compounds. Simultaneous adaptation to these aromatic compounds also occurred. A similar phenomenon was observed in the aerobic metabolism of aromatic compounds by this strain. A new pathway for the anaerobic metabolism of phthalate and a series of other aromatic compounds by this strain was proposed. Some properties of the regulation of this pathway were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号