首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe microarrays of oligosaccharides as neoglycolipids and their robust display on nitrocellulose. The arrays are obtained from glycoproteins, glycolipids, proteoglycans, polysaccharides, whole organs, or from chemically synthesized oligosaccharides. We show that carbohydrate-recognizing proteins single out their ligands not only in arrays of homogeneous oligosaccharides but also in arrays of heterogeneous oligosaccharides. Initial applications have revealed new findings, including: (i) among O-glycans in brain, a relative abundance of the Lewis(x) sequence based on N-acetyllactosamine recognized by anti-L5, and a paucity of the Lewis(x) sequence based on poly-N-acetyllactosamine recognized by anti-SSEA-1; (ii) insights into chondroitin sulfate oligosaccharides recognized by an antiserum and an antibody (CS-56) to chondroitin sulfates; and (iii) binding of the cytokine interferon-gamma (IFN-gamma) and the chemokine RANTES to sulfated sequences such as HNK-1, sulfo-Lewis(x), and sulfo-Lewis(a), in addition to glycosaminoglycans. The approach opens the way for discovering new carbohydrate-recognizing proteins in the proteome and for mapping the repertoire of carbohydrate recognition structures in the glycome.  相似文献   

2.
Conditions were established for desulphation of hexa-, octa-, deca- and larger oligosaccharides derived from corneal keratan sulphate after treatment with endo-beta-galactosidase. The antigenicities of the desulphated oligosaccharides were compared with those of the native oligosaccharides in chromatogram binding, plastic-plate binding or inhibition of binding assays using a novel microimmunochemical approach with oligosaccharide-lipid conjugates (neoglycolipids). The results clearly show that sulphate residues are essential components of the antigenic determinant(s) recognised by three monoclonal antibodies to keratan sulphate, 5-D-4, 1-B-4 and MZ15, but they mask the i antigen activity of the linear poly-(N-acetyllactosamine) backbones of this glycosaminoglycan. Immunochemical assays, before and after beta-N-acetylglucosaminidase treatment of desulphated linear hexa-, octa- and decasaccharides derived from keratan sulphate, indicate that for reaction with one anti-i antibody, Den, there is an absolute requirement for the non-reducing beta-galactosyl residue of the i antigen structure to be in the terminal position, but with a second anti-i antibody, Tho, there is in addition some reactivity with the i antigen structure having an N-acetylglucosamine residue at the non-reducing end. The chromatographic properties after desulphation or nitrosation of a minor keratan sulphate oligosaccharide (a dodecasaccharide), which reacts especially well with antibody 5-D-4, have provided the first evidence for the presence of glucosamine residues that may be N-sulphated in corneal keratan sulphate.  相似文献   

3.
Carbohydrate recognition by bovine serum conglutinin has been investigated by inhibition and direct binding assays using glycoproteins and polysaccharides from Saccharomyces cerevisiae (baker's yeast), and neoglycolipids derived from N-acetylglucosamine oligomers, mannobiose and human milk oligosaccharides. The results clearly show that conglutinin is a lectin which binds terminal N-acetylglucosamine, mannose and fucose residues as found in chitobiose (GlcNAc beta 1-4GlcNAc), mannobiose (Man alpha 1-3Man) and lacto-N-fucopentaose II [Fuc alpha 1-4(Gal beta 1-3)GlcNAc beta 1-3Gal beta 1-4Glc] respectively.  相似文献   

4.
Two different mannose-binding proteins (MBP-A and MBP-C), which show 56% sequence identity, are present in rat serum and liver. It has previously been shown that MBP-A binds to a range of monosaccharide-bovine serum albumin conjugates, and that, among oligosaccharide ligands tested, preferential binding is to terminal nonreducing N-acetylglucosamine residues of complex type N-linked oligosaccharides. In order to compare the binding specificity of MBP-C, an expression system has been developed for production of a fragment of this protein which contains the COOH-terminal carbohydrate-recognition domain. After radioiodination, the domain has been used to probe natural glycoproteins, neoglycoproteins, and neoglycolipids. Like MBP-A, MBP-C binds several different monosaccharides conjugated to bovine serum albumin, including mannose, fucose, and N-acetylglucosamine, although binding to the last of these is relatively weaker than observed for MBP-A. The results of binding to natural glycoproteins and to neoglycolipids containing oligosaccharides derived from these proteins are most compatible with the interpretation that MBP-C interacts primarily with the trimannosyl core of complex N-linked oligosaccharides, with additional ligands being terminal fucose and perhaps also peripheral mannose residues of high mannose type oligosaccharides. This binding specificity is thus quite distinct from that of MBP-A. The presence of multiple MBPs with distinct binding specificities in preparations derived from serum and liver explains conflicting conclusions which have been reached about carbohydrate recognition by these proteins.  相似文献   

5.
Abstract: The L5 antigenic determinant was previously suggested to be a carbohydrate epitope present on murine cell recognition molecules in the developing brain and to be an early neural marker in the chick embryo. Here, we show that L5 immunoreactivity is associated with complex-type N -glycosidic oligosaccharides. To identify the carbohydrate structure recognized by the L5 antibody, we investigate its binding to N-linked oligosaccharides derived from L5 glycoproteins and to known glycans. Results of mass spectrometric analyses of L5-positive neoglycolipids prepared from L5 glycoproteins are consistent with those for N -glycans containing a 3-fucosyl N -acetyllactosamine sequence. We also investigate L5 binding to structurally defined, lipid-linked oligosaccharides based on the blood group type I and II backbones. Chromatogram binding assays, ELISA, and inhibition studies show that the antibody reacts strongly with carbohydrate chains presenting the 3-fucosyl N -acetyllactosamine sequence [Lewisx (Lex) or X-hapten] also recognized by anti-SSEA-1 and anti-CD15. Histochemical studies with different antibodies recognizing the Lex sequence show partially overlapping patterns of immunoreactivity during early neural development in the chick embryo. Therefore, we suggest that the epitope recognized by L5 antibody is closely related to those for anti-SSEA-1 and anti-CD15.  相似文献   

6.
The interaction of the galactose-recognizing receptor from rat peritoneal macrophages with ligands containing terminal galactose residues, such as asialoorosomucoid, desialylated erythrocytes or lymphocytes, can be inhibited by free N-acetylneuraminic acid (Neu5Ac) and oligosaccharides or glycoproteins containing this sugar in terminal position. This effect of Neu5Ac on the receptor is specific. The other naturally occurring or most of synthetic neuraminic acid derivatives tested do not exhibit an equivalent inhibitory potency as Neu5Ac. Although free Neu5Ac inhibits 5-fold stronger (K50 = 0.2mM) than free galactose, clustering of Neu5Ac in oligosaccharides and glycoproteins does not lead to stronger inhibition, which is in contrast to galactose-containing ligands. A more branched (triantennary) sialooligosaccharide inhibits less than biantennary and unbranched sialooligosaccharides. This may be the reason, why complex sialic acid-containing ligands like native orosomucoid or blood cells are not bound and internalized by the macrophages. The dissociation of asialoorosomucoid from the receptor is slow under the influence of Neu5Ac and requires relatively high concentrations of this sugar, whereas the dissociation mediated by galactose is rapid and requires lower concentrations. An allosteric influence of Neu5Ac on the binding of galactose by the receptor is discussed.  相似文献   

7.
This report describes the preparation of a library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins, characterization of the probes by liquid secondary ion mass spectrometry, and investigation of their reactions with 125I-labeled bovine serum conglutinin by chromatogram binding assays. The results, together with additional binding studies using neoglycolipids derived from purified complex type bi-, tri-, and tetraantennary oligosaccharides from urine, or their glycosidase-treated products, have shown that the combining specificity of conglutinin includes structures not only on high mannose-type oligosaccharides but also on hybrid- and complex-type chains. With high mannose-type oligosaccharides there is increased reactivity from the Man5 to the Man8 structures, indicating a preference for the terminal Man alpha 1-2 sequence. With complex- and hybrid-type oligosaccharides, the requirements for binding are the presence of nonreducing terminal N-acetylglucosamine or mannose residues, but the presence of a bisecting N-acetylglucosamine residue may inhibit binding. From these results it is deduced that the reactivity of conglutinin with the complement glycopeptide iC3b rather than the intact glycoprotein C3 is due to the oligosaccharide accessibility rendered by proteolysis in the complement cascade.  相似文献   

8.
Reduced O-linked chains and reducing N-linked chains were obtained from human milk galactosyltransferase by degradation with alkaline borohydride and hydrazinolysis, and then purified by ion-exchange chromatography. The reactivities of the conjugates of the oligosaccharides with L-alpha-phosphatidyl ethanolamine dipalmitoyl (PPEADP) towards monoclonal anti-Lea and anti-SSEA-1 were then determined, either by antibody-binding assays after absorbing the neoglycolipids onto plastic wells, or by inhibition assays after incorporating the neoglycolipids into liposomes and testing them as inhibitors of antibody binding. The oligosaccharides were also immunostained with monoclonal anti-Lea after h.p.t.l.c. and coupling to PPEADP. Antigenic activities were detected in the O-linked chains by all three assay systems, whereas, for the less abundant N-linked chains, reactivities were detected by the inhibition assays only. The results provide evidence for the expression of Lea and SSEA-1 antigen activities on both the O- and N-linked chains of this enzyme glycoprotein.  相似文献   

9.
Using an overlay technique, we previously showed that the Gram-negative periodontal pathogen Fusobacterium nucleatum binds to a glycoprotein of Mr 89,000 (Prakobphol, A., Murray, P., and Fischer, S.J. (1987) Anal. Biochem. 164, 5-11) in the parotid saliva of some individuals. We now show that deglycosylation of the purified glycoprotein results in loss of receptor activity. Amino acid analysis of the protein core showed predominantly proline, glycine, and glutamic acid/glutamine, a characteristic of proline-rich glycoproteins (PRG). The amino terminus contained repeating sequences of Ser-Gln-Gly-Pro-Pro-Pro-Arg-Pro-Gly-Lys-Pro-Glu-Gly-Pro-Pro-Pro- Gln-Gly that had significant compositional and sequence homology to that encoded by exon 3 of the PRB3 gene. We analyzed the PRG oligosaccharides by a combination of mass spectrometry techniques and nuclear magnetic resonance spectroscopy. Twenty-seven highly fucosylated structures were identified. The most abundant was as follows (where Fuc is fucose). (formula; see text) To understand the structural basis of F. nucleatum binding, we screened glycolipids and neoglycolipids carrying carbohydrate structures related to those of the PRG for receptor activity; components with unsubstituted terminal lactosamine residues best supported adherence. Neoglycolipids constructed from PRG oligosaccharides were also receptors. Treatment with beta-galactosidase, but not alpha-fucosidase, abolished binding, suggesting that unsubstituted lactosamine units, including the 6-antenna of the major oligosaccharide, mediate F. nucleatum adherence.  相似文献   

10.
Therapeutic glycoproteins produced in different host cells by recombinant DNA technology often contain terminal GlcNAc and Gal residues. Such glycoproteins clear rapidly from the serum as a consequence of binding to the mannose receptor and/or the asialoglycoprotein receptor in the liver. To increase the serum half-life of these glycoproteins, we carried out in vitro glycosylation experiments using TNFR-IgG, an immunoadhesin molecule, as a model therapeutic glycoprotein. TNFR-IgG is a disulfide-linked dimer of a polypeptide composed of the extracellular portion of the human type 1 (p55) tumor necrosis factor receptor (TNFR) fused to the hinge and Fc regions of the human IgG(1) heavy chain. This bivalent antibody-like molecule contains four N-glycosylation sites per polypeptide, three in the receptor portion and one in the Fc. The heterogeneous N-linked oligosaccharides of TNFR-IgG contain sialic acid (Sia), Gal, and GlcNAc as terminal sugar residues. To increase the level of terminal sialylation, we regalactosylated and/or resialylated TNFR-IgG using beta-1,4-galactosyltransferase (beta1,4GT) and/or alpha-2,3-sialyltransferase (alpha2,3ST). Treatment of TNFR-IgG with beta1,4GT and UDP-Gal, in the presence of MnCl(2), followed by MALDI-TOF-MS analysis of PNGase F-released N-glycans showed that the number of oligosaccharides with terminal GlcNAc residues was significantly decreased with a concomitant increase in the number of terminal Gal residues. Similar treatment of TNFR-IgG with alpha2,3ST and CMP-sialic acid (CMP-Sia), in the presence of MnCl(2), produced a molecule with an approximately 11% increase in the level of terminal sialylation but still contained oligosaccharides with terminal GlcNAc residues. When TNFR-IgG was treated with a combination of beta1,4GT and alpha2,3ST (either in a single step or in a stepwise fashion), the level of terminal sialylation was increased by approximately 20-23%. These results suggest that in vitro galactosylation and sialylation of therapeutic glycoproteins with terminal GlcNAc and Gal residues can be achieved in a single step, and the results are similar to those for the stepwise reaction. This type of in vitro glycosylation is applicable to other glycoproteins containing terminal GlcNAc and Gal residues and could prove to be useful in increasing the serum half-life of therapeutic glycoproteins.  相似文献   

11.
We have purified phosphomannosyl-enzyme receptors from bovine liver on an affinity column composed of glycoproteins isolated from Dictyostelium discoideum secretions. Binding of human fibroblast beta-hexosaminidase B to receptors reconstituted into phosphatidylcholine liposomes was 1) specifically inhibited by mannose 6-phosphate, but not mannose 1-phosphate or glucose 6-phosphate, and 2) had properties similar to the previously reported binding of enzyme to receptors on cell surfaces and isolated membranes. In order to determine the structural features of the phosphomannosyl recognition marker required for receptor recognition, we covalently coupled purified receptor to an agarose gel bead support for affinity chromatography of phosphorylated, high mannose-type oligosaccharides isolated from fibroblast secretions radiolabeled with [2-3H]mannose. Neutral oligosaccharides and oligosaccharides containing one or two phosphates in phosphodiester linkage were not retained by the receptor column. By contrast, oligosaccharides bearing one phosphomonoester moiety were retarded on the column; those bearing two phosphomonoesters were bound to the column and were eluted with 10 mM mannose 6-phosphate. The binding of the oligosaccharides to the immobilized receptor correlates with their ability to be pinocytosed by fibroblasts and shows that the preferred recognition marker for the phosphomannosyl-enzyme receptor is a high mannose-type oligosaccharide chain bearing two uncovered phosphomannosyl groups.  相似文献   

12.
In this report the carbohydrate antigens expressed on the three oligosaccharide domains, core, backbone and peripheral, of mucin-type glycoproteins are briefly reviewed in the light of recent observations with monoclonal antibodies. These have revealed that a number of cell-surface antigens which behave as tumour-associated and differentiation antigens of man or mouse are abundantly expressed on the carbohydrate chains of a variety of secreted mucins of human and animal origins and they belong to an antigen system which also includes the major blood group antigens. Examples are given of the use of well-characterized anti-carbohydrate antibodies to derive structural information on (a) mucin-type glycoproteins of human B lymphocyte membranes, (b) the high molecular weight glycoproteins of the normal human gastric and distal-colon mucosae and (c) tumour-derived glycoproteins from these two organs. Major differences between the antigenicities of the normal stomach and distal-colon, and between their tumour-derived glycoproteins, and the important effect of the secretor status in the expression of these antigens are described. These observations have enabled a better understanding of the individual and tissue differences in the expression of tumour-associated antigens. The possibility is raised that these carbohydrate structures (many of which also occur on certain N-linked oligosaccharides and glycolipids) are components of receptor systems for endogenous ligands. More tangible evidence is cited for the role of certain structures in this family of saccharides as receptors for infective agents.  相似文献   

13.
A second generation of lipid-linked oligosaccharide probes, fluorescent neoglycolipids, has been designed and synthesized for ligand discovery within highly complex mixtures of oligosaccharides. The aminolipid 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE), which has been used extensively to generate neoglycolipids for biological and structural studies, has been modified to incorporate a fluorescent label, anthracene. This new lipid reagent, N-aminoacetyl-N-(9-anthracenylmethyl)-1, 2-dihexadecyl-sn-glycero-3-phosphoethanolamine (ADHP), synthesized from anthracenaldehyde and DHPE gives an intense fluorescence under UV light. Fluorescent neoglycolipids derived from a variety of neutral and acidic oligosaccharides by conjugation to ADHP, by reductive amination, can be detected and quantified by spectrophotometry and scanning densitometry, and resolved by TLC and HPLC with subpicomole detection. Antigenicities of the ADHP-neoglycolipids are well retained, and picomole levels can be detected using monoclonal carbohydrate sequence-specific antibodies. Among O-glycans from an ovarian cystadenoma mucin, isomeric oligosaccharide sequences, sialyl-Lea- and sialyl-Lex-active, could be resolved by HPLC as fluorescent neoglycolipids, and sequenced by liquid secondary-ion mass spectrometry. Thus the neoglycolipid technology now uniquely combines high sensitivity of immuno-detection with a comparable sensitivity of chemical detection. Principles are thus established for a streamlined technology whereby an oligosaccharide population is carried through ligand detection and ligand isolation steps, and sequence determination by mass spectrometry, enzymatic sequencing and other state-of-the-art technologies for carbohydrate analysis.  相似文献   

14.
Many glycoproteins contain multiple glycosylation sites that can present multi-valent epitopes for antigenic recognition. Release of the oligosaccharides results in loss of avidity of antibody binding, which has been overcome by reforming clustered ligands, usually by reductive amination of free reducing oligosaccharides to poly-amine groups. We have adapted this approach to hydrazinolytic release of O-linked chains of mucin glycoproteins and 'one-pot' microscale coupling to poly-L-lysine (PLL). The conjugated PLL adheres to nitrocellulose membranes through washing procedures required for antibody or lectin overlay and detection. We show evidence for the applicability of this technique using lectin and antibody reactivity to the oligosaccharides of pigeon intestinal mucins, which have been implicated in the allergic disease pigeon fanciers' lung.  相似文献   

15.
Papac  DI; Briggs  JB; Chin  ET; Jones  AJ 《Glycobiology》1998,8(5):445-454
This report describes a convenient method for the rapid and efficient release of N-linked oligosaccharides from low microgram amounts of glycoproteins. A 96-well MultiScreen assay system containing a polyvinylidene difluoride (PVDF) membrane is employed to immobilize glycoproteins for subsequent enzymatic deglycosylation. Recombinant tissue-type plasminogen activator (rt-PA) is used to demonstrate the deglycosylation of 0.1-50 micrograms of a glycoprotein. This method enabled the recovery of a sufficient amount of N-linked oligosaccharides released enzymatically with peptide N-glycosidase F (PNGaseF) from as little as 0.5 microgram rt-PA for subsequent analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI- TOF) mass spectrometry. The immobilization of rt-PA to the PVDF membrane did not sterically inhibit the PNGaseF-mediated release of oligosaccharides from rt-PA as determined by tryptic mapping experiments. Comparison of the oligosaccharides released from 50 micrograms of rt-PA by either the 96-well plate method or by a standard solution digestion procedure showed no significant differences in the profiles obtained by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both neutral and sialylated oligosaccharide standards spiked into wells were recovered equally as determined by HPAEC-PAD. One advantage of this approach is that reduction and alkylation can be performed on submicrogram amounts of glycoproteins with easy removal of reagents prior to PNGaseF digestion. In addition, this method allows 60 glycoprotein samples to be deglycosylated in 1 day with MALDI-TOF or HPAEC-PAD analysis being performed on the following day.   相似文献   

16.
This communication is concerned with the binding specficityof the leukocyte-adhesion molecule L-selectin (leukocyte homingreceptor) towards structurally defined sulphated oligosaccharidesof the blood group Lea and Lex series, and of the glycolsaminoglycanseries heparin, chondroitin sulphate and keratan sulphate. Therecombinant soluble form of the rat L-selectin (L-selectin-IgGFc chimera) investigated here was shown previously to bind tolipid-linked oligosaccharides 3-O, 4-O and 6-O sulphated atgalactose, such as sulphatides and a mixture of 3-sulphatedLea/Lex type tetrasaccharides isolated from ovarian cystadenoma,as well as to the HNK-1 glycolipid with 3-O sulphated glucuronicacid. In the present study, the L-selectin investigated in bothchromatogram binding and plastic microwell binding experimentsusing neoglycolipids was found to bind to the individual 3-sulphatedLea and Lex sequences (penta-, tetra- and trisaccharides), andwith somewhat lower intensities to their non-fucosylated analogues.Glycosaminoglycan disaccharides of keratan sulphate, heparinand chondroitin sulphate types were also bound by L-selectinin one or both assay systems, leading to the conclusion thatclustered glycosaminoglycan oligosaccharides with 6-O sulphationof N-acetylgalactctosamine, N-acetylglucosamine or glucosamine,4-O sulphation of N-acetylgalactosamine, 2-O sulphation of uronicacid, N-sulphation of glucosamine and, to a lesser extent, thenon-sulphated uronic acid-contahing disaccharides, can supportL-selectin adhesion. As inflammatory chemokines (short-rangestimulators of lymphocyte migration which trigger integrin activation)are known to bind to endothelial glycosaminoglycans, we proposethat the binding of the lymphocyte membrane L-selectin to endothelialglycosaminoglycans may provide a link between the selectin-mediatedand integrin-mediated adhesion systems in leukocyte extravasationcascades. The posibility is also raised that lymphocyte L-selectininteractions with glycosaminoglycans may contribute to pathologiesof glycosaminoglycan-rich tissues, e.g. cartilage loss in rheumatoidarthritis and inflammatory lesions of the cornea. glycosaminoglycans leukocyte adhesion cascades neoglycolipids oligosaccharide presentation sulphated oligosaccharides  相似文献   

17.
Secreted proteins and membrane proteins are frequently post-translationally modified by oligosaccharides. Therefore, many glycoproteins are involved in signal transduction. One example is growth factor receptors, which are membrane proteins that often contain oligosaccharides. The oligosaccharides in those growth factor receptors play crucial roles in receptor functions. An analysis of glycosyltransferase-transfectants revealed that the branching structures of oligosaccharide also serve as important determinants. For example, N-glycans of epidermal growth factor receptor (EGFR) are involved in receptor sorting, ligand binding and dimerization. The addition of a bisecting GlcNAc to N-glycans increases the endocytosis of EGFR. N-glycans of Trk, a high affinity nerve growth factor receptor, also affect its function. Thus, oligosaccharides play an important role in growth factor signaling. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
High-temperature gas chromatography and gas chromatography-inass spectrometry for the analyses of oligosaccharides derived from glycoproteins or glycosphingolipids has been developed. Pcrmethylatcd oligosaccharides with up to about 12 sugar residues and masses up to 2500 Daltons can be analyzed. This approach is discussed and exemplified.  相似文献   

19.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

20.
Rotaviruses are the most common cause of severe gastroenteritisin infants and children worldwide. Early events of virus bindingand entry are the critical determinants of cellular permissivenessto rotavirus replication. The only known ligands for rotavirusesare sialic acids. We now report that simian rotaviruses bindpreferentially to a subset of sialylated glycoconjugates, i.e.glycoproteins containing O-linked sialic acid moieties. Rotavirusesare able to distinguish between sialylated trisaccharide ligandspresented as neoglycolipids. Higher avidity binding by rotavirusesis explained by multivalent binding to clustered sialic acidmoieties. Our in vitro data are extended to explain the protectiveeffect of mucins in the murine model of rotavirus disease andthe specific binding by rotavirus to a high molecular weightsialomucin in the infant mouse intestine. Rotavirus bindingto a sialomucin may be analogous to selectin-mediated mechanismsof cellular adhesion, and may be advantageous to the virus inthe dynamic environment of the intestine. neoglycoconjugates receptor rotavirus sialic acids sialomucins  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号